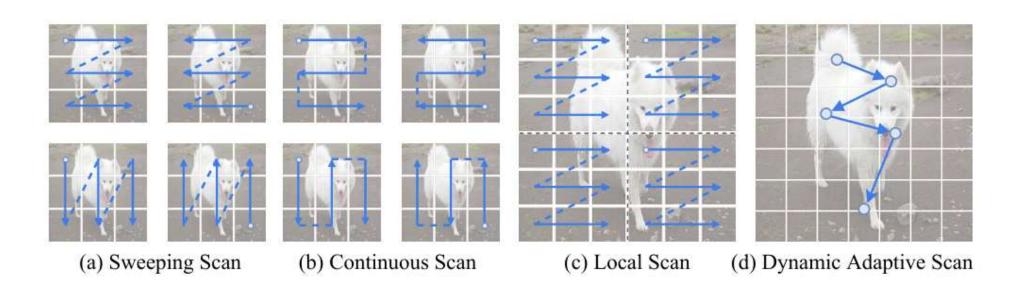
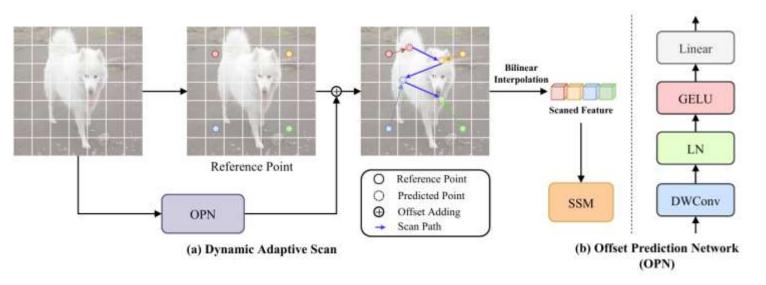

DAMamba: Vision State Space Model with Dynamic Adaptive Scan

Tanzhe Li, Caoshuo Li, Jiayi Lyu, Hongjuan Pei, Baochang Zhang, Taisong Jin, Rongrong Ji

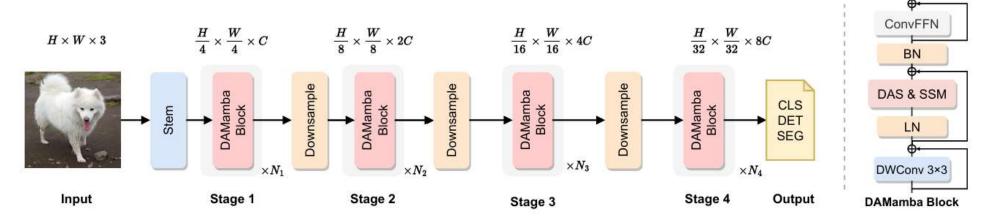
Introduction


- Existing vision SSMs primarily leverage manually designed scans to flatten image patches into sequences locally or globally.
- This approach disrupts the original semantic spatial adjacency of the image and lacks flexibility.

Introduction


- To address this limitation, we propose Dynamic Adaptive Scan (DAS), a data-driven method that adaptively allocates scanning orders and regions.
- This enables more flexible modeling capabilities while maintaining linear computational complexity and global modeling capacity.

Methodology


- DAS starts by defining a set of learnable positions, with initial values corresponding to the original locations of each patch.
- Then, through a learnable offset prediction network (OPN), a set of offset values is generated for each patch.
- The predicted patches are arranged from top to bottom and left to right based on their original positions, dynamically forming a new sequence

Methodology

Based on the proposed DAS, we develop a powerful vision Mamba model, termed DAMamba.DAMamba can serve as a versatile vision backbone for various vision tasks.

Models	Channels	Blocks
DAMamba-F	[48, 96, 192, 256]	[2, 2, 10, 2]
DAMamba-T	[80, 160, 320, 512]	[3, 4, 12, 5]
DAMamba-S	[96, 192, 384, 512]	[4, 8, 20, 6]
DAMamba-B	[112, 224, 448, 640]	[4, 8, 25, 8]

Image Classification on ImageNet-1K

Table 2: Results of DAMamba and the current state-of-the-art backbones on ImageNet-1K. All the models are trained and tested at 224×224 resolution.

Model	Type	Params (M)	FLOPs(G)	Top-1 (%
ConvNeXt V2-F [57]	CNNs	. 5	0.8	78.0
Vim-Ti [69]	SSMs	37	1.5	76.1
LocalVim-Ti (69)	SSMs	- 8	1.5	76.2
EffcientVMambu-T HI	SSMs	6	0.8	76.5
DAMamba-F (ours)	SSMa	6	1.3	79.1
SLaK-T [34]	CNNs	30	5.0	82.5
ConvNeXt V2-T [57]	CNNs	29	4.5	82.5
InceptionNeXt-T [62]	CNNs	28	4.2	82.3
MambuOut-Tiny [61]	CNNs	27	4.5	82.7
UniRepLKNet-T (8)	CNNs	31	4.9	83.2
Swin-T [36]	ViTa	29	4.5	81.3
CSwin-T [9]	ViTs	23	4.3	82.7
Agent-Swin-T [13]	ViTs	29	4.5	82.6
DATE T (58)	ViTx	29	4.6	82.0
PVTv2-82 [55]	WTs	26	4.0	82.0
ClusterFormer-Tiny [32]	ViTs.	28	5500	81.5
Slide-PVT-S (39)	ViTs	23	4.0	81.7
NAT-T [[6]	ViTi-	28	4.3	85.2
OFormera-T [66]	ViTa	29	4.6	82.5
PartialFormer-B3 [52]	ViTs	36	3.4	83.0
StructViT-S-8-1 [28]	ViTs	24	5.4	83.3
Vim-\$ 69	SSM	26	5.1	80.5
VMamba-T (35)	SSMs	30	4.9	82.6
PlainMambu-L2 (60)	SSMs	25	8.1	81.6
LocalVMambo-T [25]	SSMs	26	5.7	82.7
Efficient/Mambu-T [41]	SSMs	33	4.0	81.8
DAMamba-T (ours)	SSMs	26	4.8	B3.8
SLaK-S E4	CNNs	55	9.8	83.8
InceptionNeXt-S [62]	CNNs	49	8.4	83.5
MambaOut-Small [61]	CNNs	48	9.0	84.1
UniRepLKNet-S [8]	CNNs	56	9.1	83.9
Swin-S [36]	ViTs	50	8.7	83.0
Agent-Swin-S [15]	ViTs	50	8.7	85.7
NAT-S [16]	ViTs	51	7.8	83.7
PVTv2-84 [55]	ViTs.	63	10.1	83.6
DAT-S (58)	Wh	50	9.0	83.7
ClusterFormer-Small (32)	ViTa	49	200	83.4
QFormer _h -S [66]	Vita	51	8.9	84.0
BiFormer-B 65	ViTs	57	9.8	84.3
PartialFormer-B4 (52)	ViTi	64	6.8	83.9
StructViT-B-8-1 [28]	ViTs	52	12.0	84.3
TransNeXt-Small	ViTs	50	10.3	84.7
VMambs-S [35]	SSMs	50	8.7	83.6
PlainMambo-L3 #60	SSM	50	14.4	82.3
LocalVMamba-S [25]	SSMs	50	11.4	83.7
DAMambu-S (ours)	SSMs	45	10.3	84.8
ConvNeXt V2-B [57]	CNNs	89	15.4	84.3
SLaK-B [34]	CNN ₆	95	17.1	84.0
InceptionNeXt-B #62	CNNs	87	14.9	84.0
MambaOut-Base 611	CNNs	85	15.8	84.2
Swin-B D6	ViTs.	88	15.4	83.5
CSwin-B (V	ViTs	78	15.0	84.2
Agent-Swin-B [15]	WTs	88	15.4	84.0
NAT-B [[6]	ViTs	90	13.7	84.3
PVTv2-85 (55)	ViTi	82	11.8	83.8
FLatten-Swin-B [14]	ViTs	89	15.4	85.8
DAT-B [SS]	ViTa	NN.	15.8	84.0
QFormerA-B 66	ViTx	90	15.7	84.1
TransNeXt-Base [44]	ViTy	90	18.4	84.8
VMamba-B [35]	SSMs	89	15.4	83.9
- restorated to Part	SSMs	86	16.3	85.2

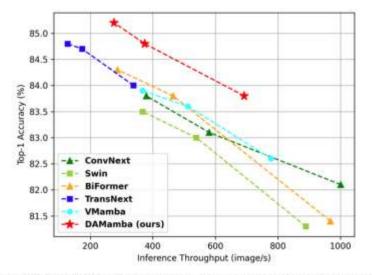


Figure 4: The trade-off between ImageNet-1K top-1 accuracy and inference throughput. All the models are trained under the DeiT training hyperparameters. The inference throughput is measured on an NVIDIA RTX 3090 GPU with a batch size 128.

Object Detection and Instance Segmentation on COCO2017

Table 3: Comparison of object detection and instance segmentation performance on COCO with Mask R-CNN detector. FLOPs are calculated with input resolution of 1280×800 .

Mask R-CNN 1× schedule								
Backbone	APb	AP_{50}^b	AP_{75}^b	APm	APm	AP_{75}^m	#Param.	FLOP
Swin-T	42.7	65.2	46.8	39.3	62.2	42.2	48M	267G
DAT-T	44.4	67.6	48.5	42.4	66.1	45.5	48M	272G
CSWin-T	46.7	68.6	51.3	42.2	65.6	45.4	42M	279G
ConvNeXt-T	44.2	66.6	48.3	40.1	63.3	42.8	48M	262G
PVTv2-B2	45.3	66.1	49.6	41.2	64.2	44.4	45M	309G
QFormer _h -T	45.9	68.5	50.3	41.5	65.2	44.6	49M	5
PartialFormer-B3	45.0	-		40.9		-	54M	248G
BiFormer-S	47.8	69.8	52.3	43.2	66.8	46.5	134	
MambaOut-T	45.1	67.3	49.6	41.0	64.1	44.1	43M	262G
VMamba-T	47.3	69.3	52.0	42.7	66.4	45.9	50M	271G
LocalVMamba-T	46.7	68.7	50.8	42.2	65.7	45.5	45M	291G
DAMamba-T	48.5	70.3	53.3	43.4	67.2	46.7	45M	284G
Swin-S	44.8	68.6	49.4	40.9	65.3	44.2	69M	354G
Agent-Swin-S	47.2	69.6	52.3	42.7	66.6	45.8		364G
DAT-S	47.1	69.9	51.5	42.5	66.7	45.4	69M	378G
CSWin-S	47.9	70.1	52.6	43.2	67.1	46.2	54M	342G
ConvNeXt-S	45.4	67.9	50.0	41.8	65.2	45.1	70M	348G
PVTv2-B3	47.0	68.1	51.7	42.5	65.2	45.7	63M	397G
BiFormer-B	48.6	70.5	53.8	43.7	67.6	47.1	300000	
MambaOut-S	47.4	69.1	52.4	42.7	66.1	46.2	65M	354G
VMamba-S	48.7	70.0	53.4	43.7	67.3	47.0	70M	349G
LocalVMamba-S	48.4	69.9	52.7	43.2	66.7	46.5	69M	414G
DAMamba-S	49.8	71.2	54.7	44.5	68.4	48.2	65M	395G
Swin-B	46.9	69.2	51.6	42.3	66.0	45.5	88M	496G
CSwin-B	48.7	70.4	53.9	43.9	67.8	47.3	88M	496G
ConvNeXt-B	47.0	69.4	51.7	42.7	66.3	46.0	107M	486G
PVTv2-B5	47.4	68.6	51.9	42.5	65.7	46.0	102M	557G
ViT-Adapter-B	47.0	68.2	51.4	41.8	65.1	44.9	102M	557G
MambaOut-B	47.4	69.3	52.2	43.0	66.4	46.3	100M	495G
VMamba-B	49.2	71.4	54.0	44.1	68.3	47.7	108M	485G
DAMamba-B	50.6	71.9	55.5	44.9	68.9	48.7	105M	520G

Table 6: Comparison of object detection and instance segmentation performance on COCO with Mask R-CNN detector. FLOPs are calculated with input resolution of 1280×800 .

Mask R-CNN 3× MS schedule								
Backbone	APb	AP_{50}^b	AP_{75}^{b}	APm	APs	AP_{75}^{m}	#Param.	FLOP
Swin-T	46.0	68.1	50.3	41.6	65.1	44.9	48M	267G
PVTv2-B2	47.8	69.7	52.6	43.1	66.8	46.7	45M	309G
ConvNeXt-T	46.2	67.9	50.8	41.7	65.0	44.9	48M	262G
NAT-T	47.7	69.0	52.6	42.6	66.1	45.9	48M	258G
QFormer _h -T	47.5	69.6	52.1	42.7	66.4	46.1	49M	
VMamba-T	48.8	70.4	53.5	43.7	67.4	47.0	50M	271G
LocalVMamba-T	48.7	70.1	53.0	43.4	67.0	46.4	45M	291G
DAMamba-T	50.4	71.4	55.5	44.8	68.6	48.6	45M	284G
Swin-S	48.2	69.8	52.8	43.2	67.0	46.1	69M	354G
PVTv2-B3	48.4	69.8	53.3	43.2	66.9	46.7	65M	397G
ConvNeXt-S	47.9	70.0	52.7	42.9	66.9	46.2	70M	348G
NAT-S	48.4	69.8	53.2	43.2	66.9	46.5	70M	330G
QFormer _h -S	49.5	71.2	54.2	44.2	68.3	47.6	70M	-G
VMamba-S	49.9	70.9	54.7	44.2	68.2	47.7	70M	349G
LocalVMamba-S	49.9	70.5	54.4	44.1	67.8	47.4	69M	414G
DAMamba-S	51.2	72.1	56.1	45.1	69.2	49.1	65M	395G
ConvNeXt-B	48.5	70.1	53.3	43.5	67.1	46.7	108M	486G
Swin-B	48.6	70.0	53.4	43.3	67.1	46.7	107M	496G
PVTv2-B5	48.4	69.2	52.9	42.9	66.6	46.2	102M	557G
DAMamba-B	51.4	72.3	56.4	45.3	69.5	48.9	105M	520G

Semantic Segmentation on ADE20K

Table 4: Comparison of semantic segmentation on ADE20K with UPerNet segmentor. FLOPs are calculated with input resolution of 512×2048 . 'SS' and 'MS' represent single-scale and multi-scale testing, respectively.

Method	mIoU (SS)	mIoU (MS)	#Param.	FLOPs	
UniRepLKNet-T	48.6	49.1	61M	946G	
ConvNeXt-T	46.0	46.7	60M	939G	
Swin-T	44.4	45.8	60M	945G	
Agent-Swin-T	46.7		61M	954G	
NAT-T	47.1	48.4	58M	934G	
QFormer _h -T	46.9	48.1	61M		
PartialFormer-B3	47.0	-	65M	923G	
BiFormer-S	49.8	50.8			
MambaOut-T	47.4	48.6	54M	938G	
VMamba-T	48.0	48.8	62M	949G	
LocalVMamba-T	47.9	49.1	57M	970G	
DAMamba-T	50.3	51.2	55M	937G	
UniRepLKNet-S	50.5	51.0	86M	1036G	
Swin-S	47.6	49.5	81M	1039G	
Agent-Swin-S	48.1	2000	81M	1043G	
ConvNeXt-S	48.7	49.6	82M	1027G	
NAT-S	48.0	49.5	82M	1010G	
QFormer _h -S	48.9	50.3	82M	-	
PartialFormer-B3	48.3		95M	1005G	
BiFormer-B	51.0	51.7	- 81		
MambaOut-S	49.5	50.6	76M	1032G	
VMamba-S	50.6	51.2	82M	1028G	
LocalVMamba-S	50.0	51.0	81M	1095G	
DAMamba-S	51.2	52.0	75M	1050G	
Swin-B	48.1	49.7	121M	1188G	
Agent-Swin-B	48.7	-	121M	1196G	
ConvNeXt-B	49.1	49.9	122M	1170G	
NAT-B	48.5	49.7	123M	1137G	
QFormer _h -B	49.5	50.6	123M		
MambaOut-B	49.6	51.0	112M	1178G	
VMamba-B	51.0	51.6	122M	1170G	
DAMamba-B	51.9	52.3	117M	1178G	

Table 5: Ablation studies on DAMamba-F for module designs.

Module design	n #Param. (M)	FLOPs (G)	Top-1 acc (%).
Baseline	5.31M	1.20G	77.7
+ DAScan	5.41M	1.23G	78.3
+ Convpos	5.43M	1.24G	78.6
+ ConvFFN	5.52M	1.26G	79.1

Visualization

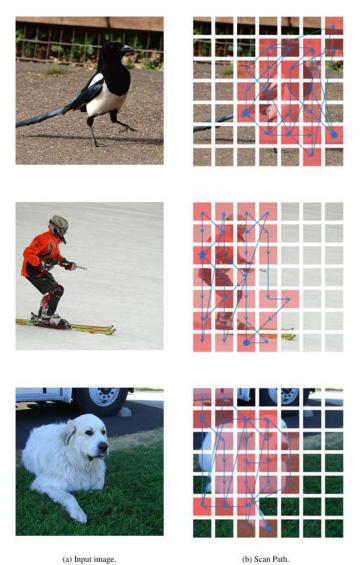



Figure 5: Visualization of the Dynamic Adaptive Scan, where the blue pentagram represents the start of the scan and the blue circle represents the end of the scan.

Thanks for listening!

