

Visual Diversity and Region-aware Prompt Learning for Zero-shot HOI detection

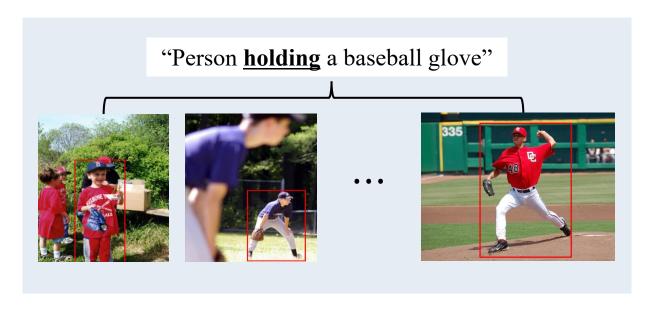
Chanhyeong Yang¹, Taehoon Song², Jihwan Park¹, Hyunwoo J. Kim²

¹Korea University ²KAIST

Task definition

Human-Object Interaction detection

- Localizing humans and objects in an image
- Recognizing their interactions
- Zero-shot HOI detection
 - Addressing unseen combinations
 - Ex) unseen combination/object/verb


Example of HOI detection

< Person, Riding, Horse >

1. Intra-class diversity

[Diversity score comparison between object and verb] 0.40 0.30 Object class 0.25 diversity score Verb class 0.364 0.274 0.15 diversity score +0.048 ± 0.060 0.10 0.00 \times Diversity score: $\mathbb{E}[1 - \cos(\cdot)]$ Object Verb

Diverse visual patterns

Verbs are more diverse than objects

 \times Diversity score: $\mathbb{E}[1 - \cos(\cdot)]$

1. Intra-class diversity

"Person **holding** a baseball glove"

[Diversity score comparison between object and verb]

Need to capture visual variance of each verb class.

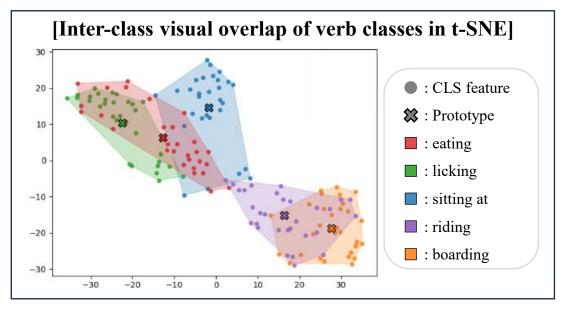
Object

Diverse visual patterns

Verbs are more diverse than objects

Verb

2. Inter-class visual entanglement


"Person eating an object."

"Person <u>licking</u> an object."

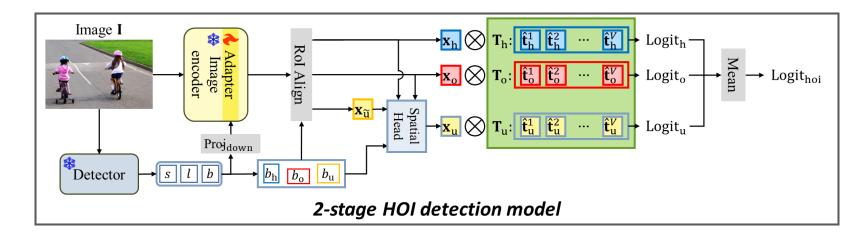
"Person <u>sitting</u> <u>at</u> an object."

Similar, but different classes

Overlap in visual embedding space

2. Inter-class visual entanglement

[Inter-class visual overlap of verb classes in t-SNE]


Requires fine-grained information of each verb class.

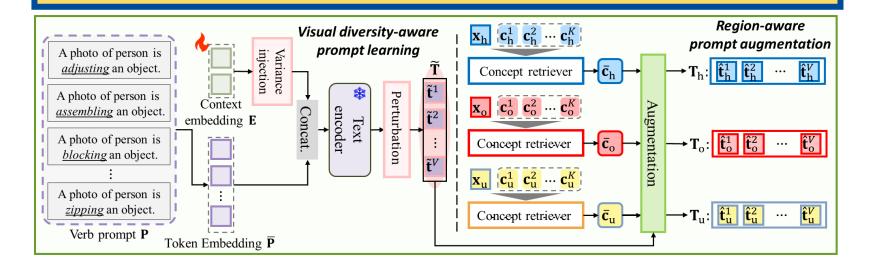
Similar, but different classes

Overlap in visual embedding space

Then, how can we handle both challenges?

Capture visual variance of each verb

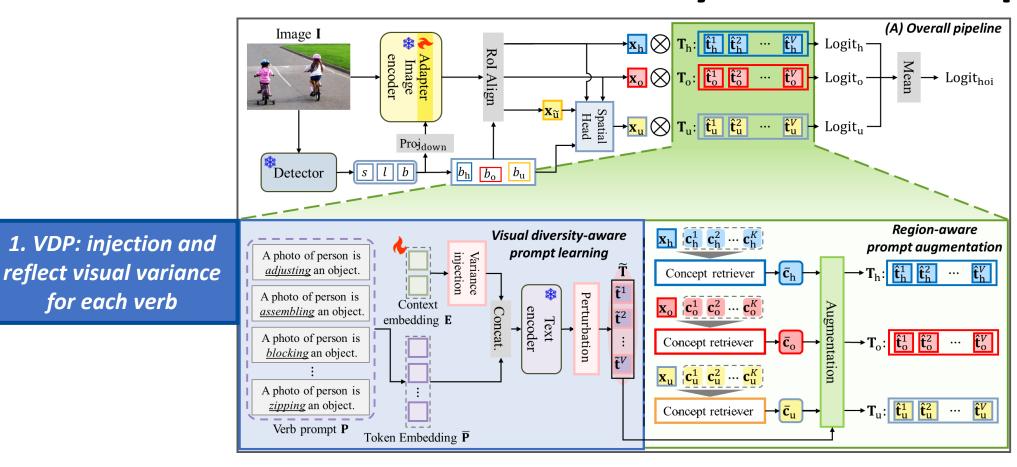
Leverage fine-grained concepts about verbs



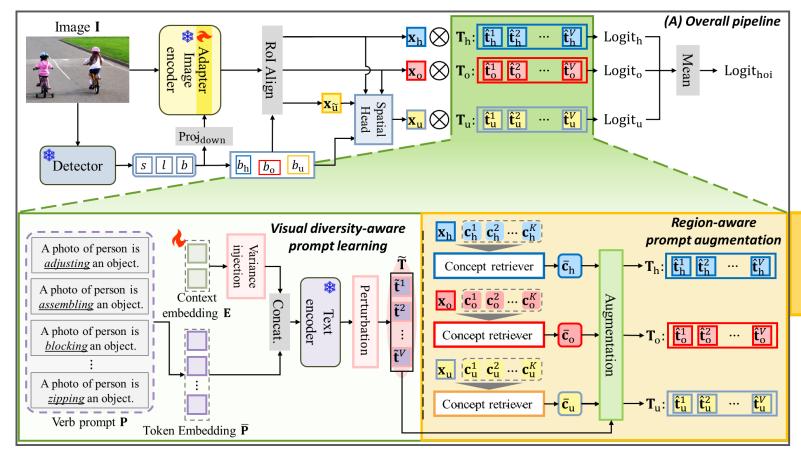
KAIST & Korea University

So, We need dual-module design: VDRP

Visual Diversity and Region-aware Prompt Learning



for each verb


1. We need VDP: Visual Diversity-aware Prompts

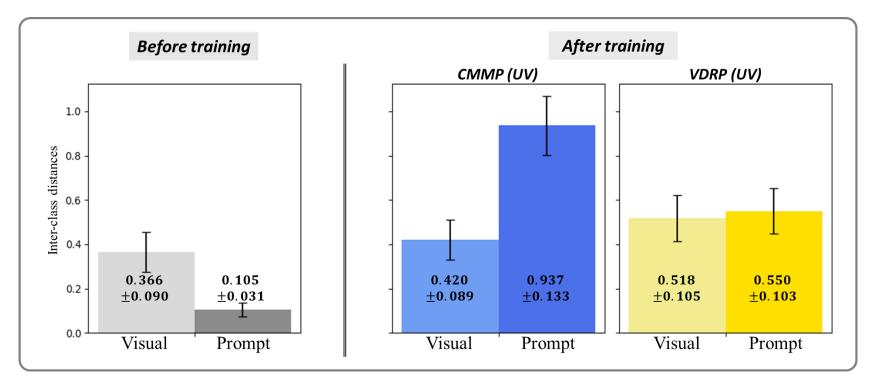
We need RAP: Region-Aware Prompts

2. RAP: augmentation with region-level concepts for each verb

HICO-DET: NF-UC / RF-UC

Method	Backbone		NF	-UC		RF-UC				
		HM	Full	Unseen	Seen	НМ	Full	Unseen	Seen	
GEN-VLKT 20	ResNet-50 + ViT-B	24.17	23.71	25.05	23.38	26.08	30.56	21.36	32.91	
EoID [50]	ResNet-50	26.71	26.69	26.76	26.66	26.11	29.52	22.04	31.39	
HOICLIP 24	ResNet-50+ViT-B	28.70	27.75	29.36	28.10	26.55	32.99	25.83	28.47	
ADA-CM [9]	ResNet-50+ViT-B	31.76	31.39	32.41	31.13	30.48	33.01	27.63	34.35	
CLIP4HOI 23	ResNet50+ViTB	29.54	28.90	31.44	28.26	31.23	34.08	27.88	35.48	
CMMP [21]	ResNet-50+ViT-B	30.82	30.18	32.09	29.71	31.10	32.18	29.45	32.87	
EZ-HOI <u>22</u>	ResNet50+ViTB	31.76	31.17	33.66	30.55	31.18	33.13	29.02	34.15	
Ours	ResNet-50+ViT-B	33.85	32.57	36.45	31.60	32.77	33.78	31.29	34.41	
UniHOI [10]	ResNet-50+ViT-L	30.40	31.79	28.45	32.63	30.76	32.27	28.68	33.16	
CMMP [21]	ResNet-50+ViT-L	34.50	<u>35.13</u>	33.52	35.53	<u>36.69</u>	<u>37.13</u>	35.98	37.42	
EZ-HOI [22]	ResNet50+ViTL	35.38	34.84	36.33	34.47	35.73	36.73	34.24	37.35	
Ours	ResNet-50+ViT-L	36.83	36.46	37.48	36.21	37.58	38.13	36.72	38.48	

HICO-DET: Unseen Object / Unseen Verb


Method	Backbone	#TP	UO				UV			
			HM	Full	Unseen	Seen	HM	Full	Unseen	Seen
FCL [I]	ResNet-50	_	17.65	19.87	15.54	20.74	_	_	_	_
ATL [2]	ResNet-50	_	17.79	20.47	15.11	21.54	_	_	_	_
GEN-VLKT 20	ResNet-50	42.05M	20.11	25.63	15.01	28.92	24.35	28.74	20.96	30.23
EoID [50]	ResNet-50	_	_	_	_	_	26.29	29.61	22.71	30.73
HOICLIP 24	ResNet-50+ViT-B	66.18M	20.32	28.53	16.30	30.99	27.72	31.09	24.30	32.19
CLIP4HOI 23	ResNet-50+ViT-B	56.70M	31.98	32.58	31.79	32.73	28.35	30.42	26.02	31.14
CMMP [21]	ResNet-50+ViT-B	2.30M	32.44	31.59	33.76	31.15	29.23	31.84	26.23	32.75
EZ-HOI <u>22</u>	ResNet-50+ViT-B	6.85M	32.14	32.27	33.28	32.06	29.09	32.32	25.10	33.49
Ours	ResNet50+ViTB	4.50M	34.41	33.39	36.13	32.84	29.80	32.73	26.69	33.72
UniHOI 10	ResNet-50 + ViT-L	52.3M	25.17	31.56	19.72	34.76	30.50	34.68	26.05	36.78
CMMP [21]	ResNet-50+ViT-L	5.40M	<u>37.83</u>	36.74	39.67	36.15	33.75	36.38	<u>30.84</u>	37.28
EZ-HOI [22]	ResNet50 + ViTL	14.07M	37.06	36.38	38.17	36.02	32.84	36.84	28.82	38.15
Ours	ResNet-50 + ViT-L	10.29M	38.41	37.81	<u>39.36</u>	37.50	34.31	37.18	31.16	38.16

KAIST & Korea University

Qualitative results

- CMMP causes modality mismatch with over-separated prompts
- ► VDRP maintains balanced alignment between the two modalities

Qualitative results

: Human region concepts

: Object region concepts

: Union region concepts

: Human box

: Ob

: Object box

Retrieved concepts

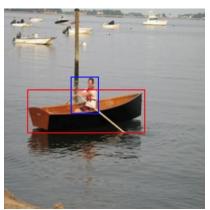
(0.27) Person is extending leg to make contact with object.

(0.25) Lower leg is straight and foot is flat on ground.

(0.21) Back is straight and shoulders are relaxed.

(0.50) Object appears to be in mid-air or suspended.

(0.35) Object's surface appears to be vibrating or trembling.


(0.07) Object's position changes or shifts.

(0.27) The object is propelled through the air.

(0.14) The person's foot is cocked back before making contact.

(0.13) The object is sent flying in a diagonal direction.

(0.13) The object is struck with a firm, direct kick.

Rowing an object.

Retrieved concepts

(0.59) Arms are extended and pulling on oars.

(0.20) Legs are bent and feet are planted firmly on the platform.

(0.14) Back is straight and facing forward.

(0.67) Rowing motion creates ripples in the water.

(0.20) Object is positioned at an angle in the water.

(0.13) Object is partially submerged in water.

(0.82) The person's legs are tucked in to maintain balance.

(0.07) The person's face is focused on the task at hand.

(0.05) The water is calm and reflective of the surrounding scenery.

Kicking an object.

With Sparsemax, irrelevant concepts are zero-out

KAIST & Korea University

Conclusions

- We propose VDRP, a dual-module prompt learning framework for zero-shot HOI detection.
- By combining visual diversity-aware prompts and region-aware prompts,
- VDRP addresses both intra-class diversity and inter-class entanglement in once.

