Inv-Entropy: A Fully Probabilistic Framework for Uncertainty Quantification in Language Models

Haoyi Song

University of Michigan Ann Arbor

INFORMS 2025 Atlanta

Collaborators

Ruihan Ji University of Minnesota

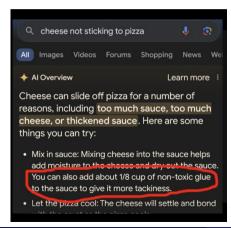
Naichen Shi Northwestern University

Lai Fan
University of Illinois

Raed Al Kontar University of Michigan

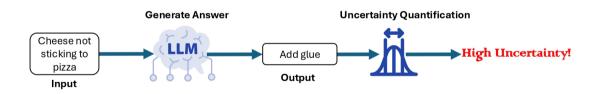
Why Quantify Uncertainty?

- LLMs can make mistakes and hallucinate (produce confidently wrong outputs).
- These undermine reliability in high-stakes applications (healthcare, legal and autonomous systems).



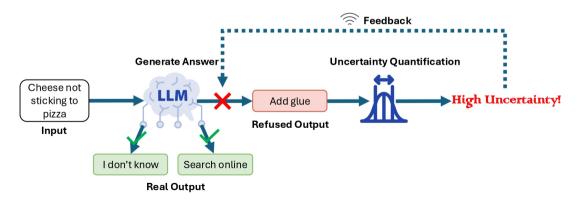
Why Quantify Uncertainty?

 Uncertainty Quantification enables LLMs to acknowledge their confidence in a generated output.



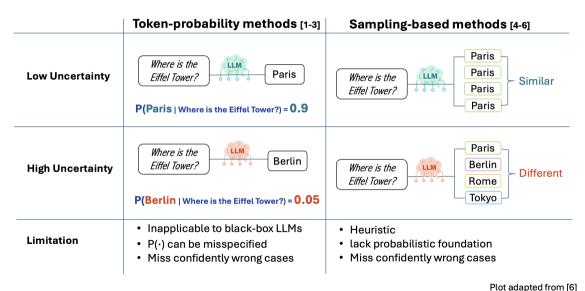
Why Quantify Uncertainty?

- Uncertainty Quantification enables LLMs to acknowledge their confidence in a generated output.
- It also allows downstream applications such as selective prediction.



5

What Exists?



Our Goal

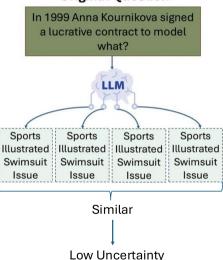
Develop a fully probabilistic framework to quantify uncertainty in LLMs:

Our Tools

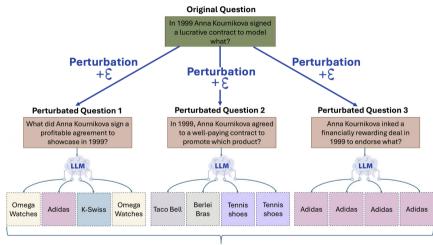
Our main tools are Perturbation and Dual Random Walk

Why Perturb? An Example

Original Question



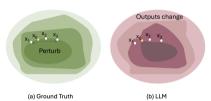
Why Perturb? An Example



Higher Uncertainty Captured by Perturbation!

Why Perturb? A Theory

Level Sets



Var(perturbed outputs) ∼ Misalignment(Ground Truth, LLM)

Theorem (Informal)

Assume f^* is the ground truth function, \hat{f} is the LLM, x_0 is the original input and x' is the perturbed input with variance σ^2 . Then,

$$\frac{1}{\sigma^2} \operatorname{\mathsf{Var}}[\hat{f}(x')] = \|\nabla \hat{f}(x_0)\|^2 - \frac{\left(\nabla \hat{f}(x_0)^\top \nabla f^\star(x_0)\right)^2}{\|\nabla f^\star(x_0)\|^2} + \mathcal{O}(\sigma)$$

University of Michigan Inv-Entropy

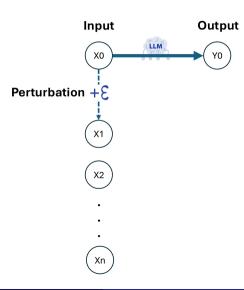
11

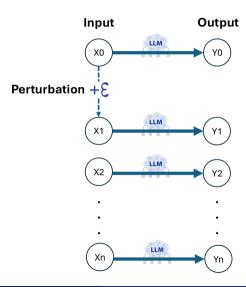
Setting

Input

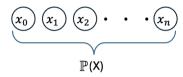
Setting

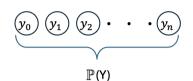
Setting

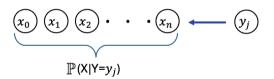




Our Goal: Fully Probabilistic Framework



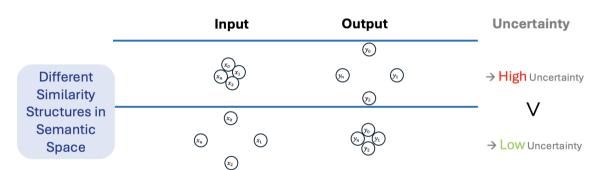




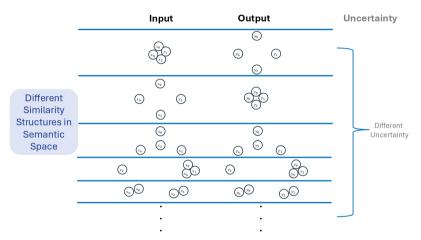
$$\underbrace{y_0 \quad y_1 \quad y_2 \cdot \cdot \cdot y_n}_{\mathbb{P}(Y|X=x_1)} \bullet \dots \bullet \underbrace{x_i}_{i}$$

$$\mathbb{P}(X)$$
 $\mathbb{P}(Y)$ $\mathbb{P}(X|Y)$ $\mathbb{P}(Y|X)$ — Uncertainty (e.g. $Var(Y)$, $H(Y|X)$,)

Similarity Structures in Semantic Space



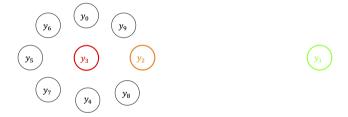
Similarity Structures in Semantic Space



Both inputs and outputs form their own **similarity** structures in the **semantic space**, causing varying degrees of **uncertainty**.

Principle of Distribution Design

 $\mathbb{P}(Y)$ assigns higher probability to dense regions in the semantic space



$$\mathbb{P}(Y = y_3) > \mathbb{P}(Y = y_2) > \mathbb{P}(Y = y_1)$$

Constructing the distribution $\mathbb{P}(Y)$

$$\mathbb{P}(Y = y_j) = \frac{1}{n+1} \sum_{i=0}^{n} \underbrace{\frac{\mathsf{a}_{\mathsf{Similarity}}(y_i, y_j)}{\sum_{k} \mathsf{a}_{\mathsf{Similarity}}(y_i, y_k)}}_{\mathsf{closeness of } y_j \mathsf{as a neighbor of } y_i}.$$

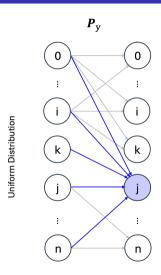
closeness of y_i as a neighbor of $y_i \Leftrightarrow$ **Transition probability** $(y_i \to y_i)$

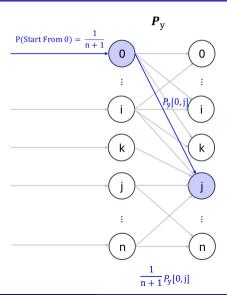
Model $\{y_0, y_1, \dots, y_n\}$ as a Random Walk, with transition probabilities P_v defined by:

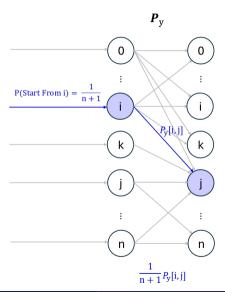
$$\mathbf{P}_{y}[i,j] = \frac{a_{\mathsf{Similarity}}(y_i, y_j)}{\sum_{k} a_{\mathsf{Similarity}}(y_i, y_k)}.$$

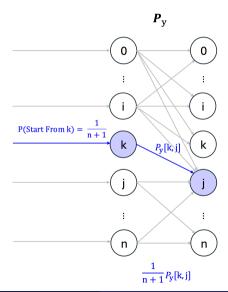
$$\pi_{\mathsf{Uniform}} = [\frac{1}{n+1}, \frac{1}{n+1}, \dots, \frac{1}{n+1}]$$

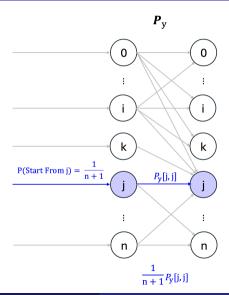
$$\mathbb{P}(Y = y_j) = \sum_{i=0}^n \frac{1}{n+1} \mathbf{P}_y[i,j] = (\pi_{\mathsf{Uniform}} \mathbf{P}_y)[j].$$

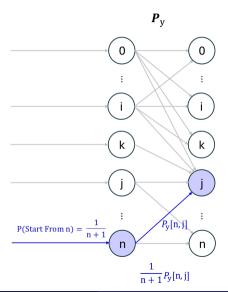










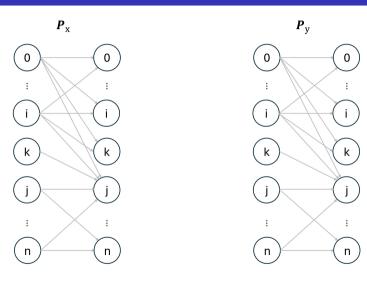


Random Walk on X

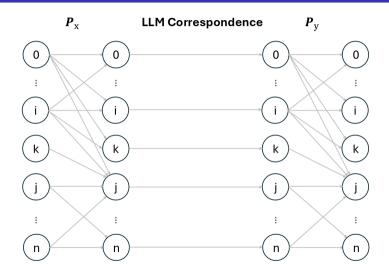
Model $\{x_0, x_1, \dots, x_n\}$ as a Random Walk, with transition probabilities P_x defined by normalized similarity:

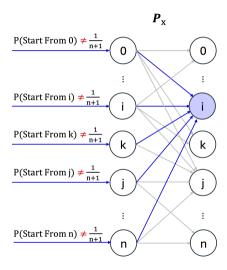
$$P_x[i,j] = \frac{a_{\text{Similarity}}(x_i, x_j)}{\sum_k a_{\text{Similarity}}(x_i, x_k)}.$$

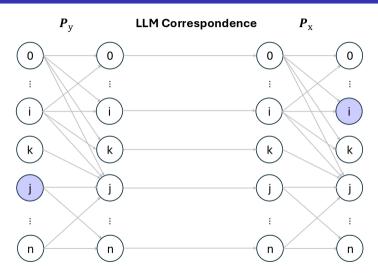
Dual Random Walk on X and Y

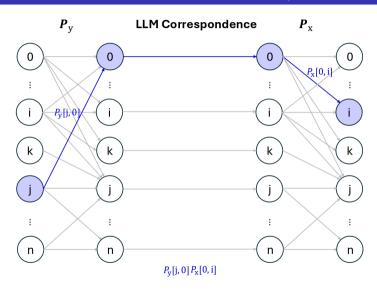


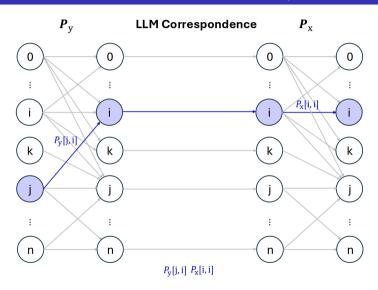
Connecting Input Space and Output Space: LLM Correspondence

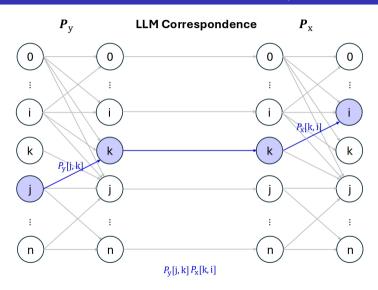


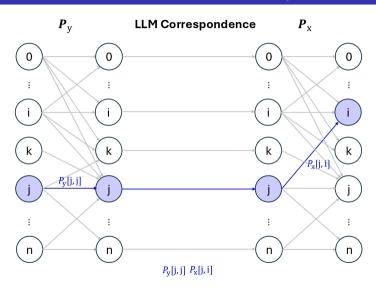




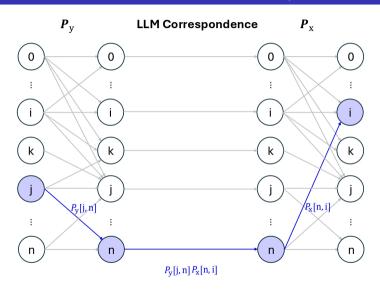








Constructing the Probability $\mathbb{P}(X = x_i \mid Y = y_j)$



Constructing the Distribution $P(X \mid Y)$

$$\mathbb{P}(X = x_i \mid Y = y_j) = (\mathbf{P}_y \mathbf{P}_x)[j, i] = \sum_k \underbrace{\frac{a_{\mathsf{Similarity}}(y_j, y_k)}{\sum_{\ell} a_{\mathsf{Similarity}}(y_j, y_\ell)}}_{\mathsf{output \ transition}} \underbrace{\frac{a_{\mathsf{Similarity}}(x_i, x_k)}{\sum_m a_{\mathsf{Similarity}}(x_m, x_k)}}_{\mathsf{input \ transition}} \underbrace{\frac{a_{\mathsf{Similarity}}(x_i, x_k)}{\sum_m a_{\mathsf{Similarity}}(x_i, x_k)}}_{\mathsf{input \ transition}}$$

Fully Probabilistic Framework

$$\mathbb{P}(Y), \mathbb{P}(X \mid Y) \Rightarrow \mathbb{P}(X), \mathbb{P}(Y \mid X)$$

Flexibility: Define any UQ measures on these distributions (entropy, divergences, distances)

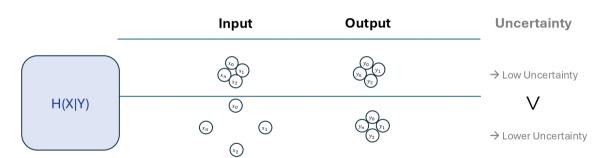
Inv-Entropy

$$H(X \mid Y) = -\sum_{i=0}^{n} \mathbb{P}(x_i \mid y_i) \log \mathbb{P}(x_i \mid y_i).$$

Uncertainty $H(Y \mid X)$

	Input	Output	Uncertainty
	$\begin{pmatrix} x_0 \\ x_1 \end{pmatrix}$	(20) (20) (20) (20)	→ Low Uncertainty
H(Y X)	$\begin{pmatrix} x_0 \\ x_1 \\ x_2 \end{pmatrix}$	% % % %	→ High Uncertainty

Uncertainty $H(X \mid Y)$



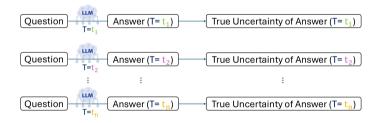
Why Inverse: From Y to X

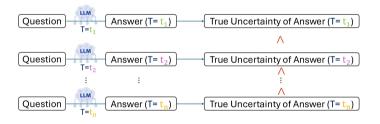
Experiment Setting

- Dataset: TriviaQA[7] (Question-Answering), SciQ[8] (Question-Answering), MMLU[9] (Multiple-choice)
- Baselines: Semantic Entropy[6], Verbalized Uncertainty (VU)[10], P(True)[11], Lexical Similarity (LexSim)[12], Degree Matrix (DegMat)[13], Long-text Uncertainty Quantification (LUQ)[14], Kernel Language Entropy (KLE)[15]
- Evaluation metrics: AUROC, PRR, Brier Score (uncertainty-correctness misalignment)

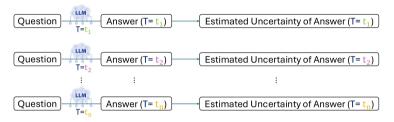
Experiments: Correctness-based Evaluation

Method	TriviaQA		SciQ		MMLU				
	AUROC↑	PRR↑	Brier↓	AUROC↑	PRR↑	Brier↓	AUROC↑	PRR↑	Brier↓
Semantic Entropy	0.579	0.517	0.166	0.679	0.763	0.173	0.518	0.690	0.208
VU	0.695	0.723	0.160	0.480	0.677	0.196	0.523	0.654	0.219
P(True)	0.604	0.797	0.172	0.522	0.679	0.215	0.474	0.671	0.215
LexSim	0.649	0.810	0.151	0.681	0.770	0.179	0.643	0.767	0.187
DegMat	0.734	0.882	0.140	0.672	0.802	0.164	0.608	0.771	0.191
LUQ	0.637	0.854	0.148	0.726	0.840	0.159	0.648	0.787	0.180
KLE	0.333	0.704	0.188	0.341	0.592	0.218	0.360	0.612	0.213
Inv-Entropy (ours)	0.788	0.885	0.128	0.740	0.853	0.157	0.780	0.898	0.147





 $\text{True Uncertainty of Answer } (\text{T=}\ \textbf{t}_1) < \text{True Uncertainty of Answer } (\text{T=}\ \textbf{t}_2) < \cdots < \text{True Uncertainty of Answer } (\text{T=}\ \textbf{t}_n)$



? Estimated Uncertainty of Answer (T= t_1) < Estimated Uncertainty of Answer (T= t_2) < \cdots < Estimated Uncertainty of Answer (T= t_n)

TSU = the percentage of questions in a dataset that satisfy the rule above

$$\mathsf{TSU}(t_1,t_2\ldots,t_n) = rac{1}{|\mathcal{D}|} \sum_{x \in \mathcal{D}} \mathbb{I}(\mathtt{UQ}(x,t_1) < \mathtt{UQ}(x,t_2) < \cdots < \mathtt{UQ}(x,t_n))\,,$$

where $\mathcal{D}=$ dataset, $x\in\mathcal{D}=$ a question and $\mathrm{UQ}(x,t)=$ estimated uncertainty of x under temperature t.

Free of correctness labels!

Experiments: TSU Evaluation

Method	TriviaQA			MMLU			
	TSU(1.0-1.4)	TSU(0.3-1.0)	TSU(0.3-1.4)	TSU(1.0-1.4)	TSU(0.3-1.0)	TSU(0.3-1.4)	
Semantic Entropy	17.35	5.18	3.94	33.20	7.14	2.09	
VU	38.78	0.00	0.00	37.62	1.37	0.00	
P(True)	3.85	0.00	0.00	5.87	0.00	0.00	
LexSim	46.94	9.18	8.16	55.06	24.78	15.28	
DegMat	45.37	18.37	13.27	69.39	21.46	14.34	
LUQ	48.06	14.78	10.20	61.22	27.55	10.80	
KLE	13.45	2.79	0.00	26.53	2.93	0.00	
Inv-Entropy (ours)	77.55	30.49	19.05	73.47	34.31	18.37	

Contributions:

- Provide a fully probabilistic framework for Uncertainty Quantification in LLMs
- Provide a rigorous theory for using perturbation-based methods
- Introduce an inverse perspective that quantifies input diversity given an output
- Introduce a new evaluation metric TSU free of correctness labels

Haoyi Song