What makes math problems hard for reinforcement learning: a case study

Ali Shehper, Anibal Medina-Mardones, Lucas Fagan, Bartłomiej Lewandowski, Angus Gruen, Yang Qiu, Piotr Kucharski, Zhenghan Wang, Sergei Gukov

State of Reinforcement Learning

- Success in Board and Video Games
 - Chess, Shogi, Go, Poker
 - Atari, Dota, StarCraft
- Math is the next playground
 - Theorem-Proving
 - Research Problems as RL Environments

Research-Level Math as RL Playground

- Andrews-Curtis Conjecture (1965)
 - Long Horizons
 - Sparse Rewards
 - A non-uniform distribution of hardness
- Existing Algorithms: Success and Limitations
- New Mathematical Results
- Propose New Algorithms

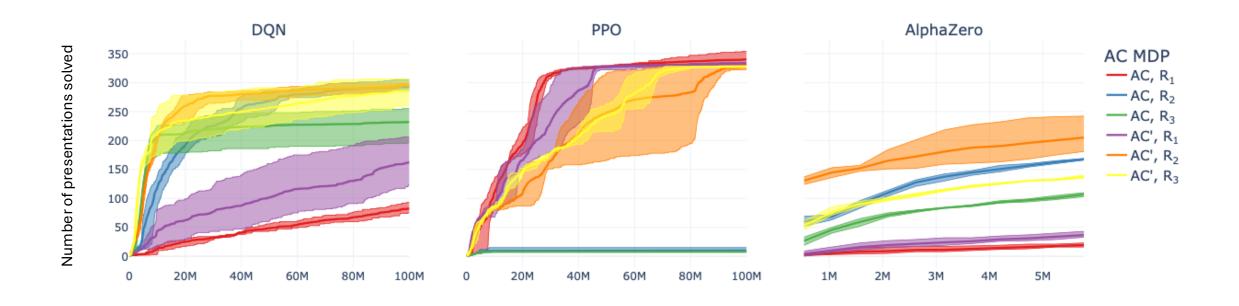
Andrews-Curtis Conjecture

- State Space: Presentations $\langle x,y \mid r_1,r_2 \rangle$ of the trivial group
- Action Space: Andrews-Curtis (AC) moves
 - 1. Substitute some r_i by $r_i r_j$ for $i \neq j$.
 - 2. Replace some r_i by r_i^{-1} .
 - 3. Change some r_i to $x_j^{\pm 1} r_i x_j^{\mp 1}$.
- Goal State: $\langle x,y \mid x,y \rangle$
- Rewards are sparse

Examples of Interest

- Open potential counterexamples
 - Akbulut-Kirby Series (1985): $AK(n) = \langle x, y \mid x^n = y^{n+1}, xyx = yxy \rangle$.
 - Miller-Schupp Series (1999): $MS(n, w) = \langle x, y \mid x^{-1}y^n x = y^{n+1}, \ x = w \rangle$.
- Solved with super-exponentially long solutions
 - Bridson, Lishak (2015): solutions of length 10^{10000}

DQN vs PPO vs AlphaZero



Number of environment steps

New Mathematical Results

Theorem A. The following infinite subfamilies of Miller–Schupp presentations are AC-trivial:

- 1. MS(1, w) for all w.
- 2. $MS(n, y^{-1}xyx^{-1})$ for all n.
- 3. $MS(2, y^{-k}x^{-1}yxy)$ for all k.

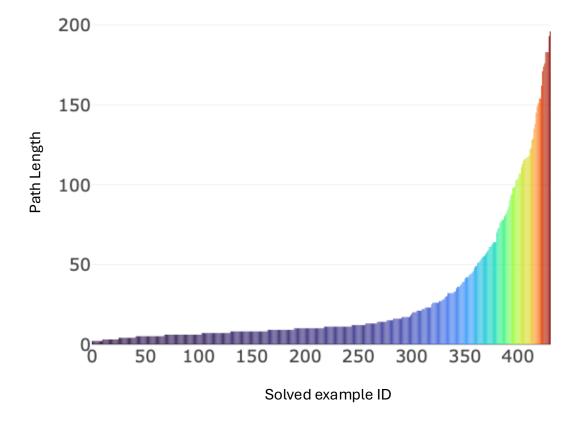
Theorem B. For every $n \geq 2$, AK(n) is AC-equivalent to the presentation

$$\langle x, y \mid x^{-1}yx = xyx^{-1}y , xy^{n-1}x = yxy \rangle,$$

of length n+11. This gives a reduction in length of AK(n) for all $n \geq 5$.

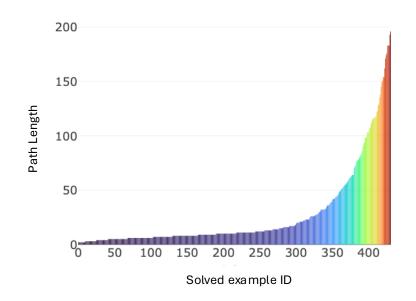
Limitations of Existing RL Algorithms

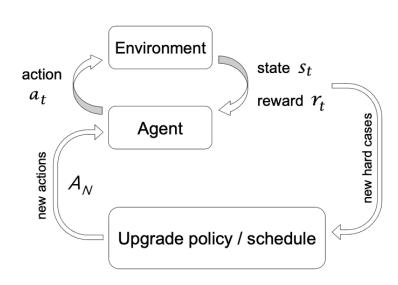
- Struggle with discovery of long paths
- Super-exponentially long paths in polynomial time?



New Reinforcement Learning Algorithms?

- Proposed Solution
 - Supermoves
 - Adaptive Action Spaces
 - Use hardness of states (such as path lengths) to select new actions (supermoves) during training
- Preliminary Experiments show success





Thank you

San Diego Convention Center
Exhibit Hall C,D,E
Thu 4 Dec 4:30 p.m. PST — 7:30 p.m. PST