

Mutual VPR: A Mutual Learning Framework for Resolving Supervision Inconsistencies via Adaptive Clustering

Qiwen Gu, Xufei Wang, Junqiao Zhao, Siyue Tao, Tiantian Feng, Ziqiao Wang, Guang Chen

Tongji University, Shanghai, China

Introduction & Motivation

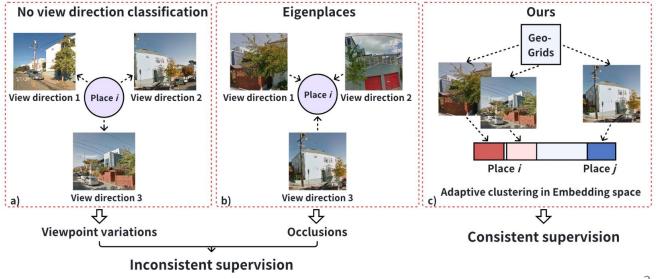
What is VPR?

- Visual Place Recognition (VPR) is a key component for localization in autonomous systems.
- It enables a robot or vehicle to determine its location by matching a query image against a database of geo-tagged images.

How it Fails :

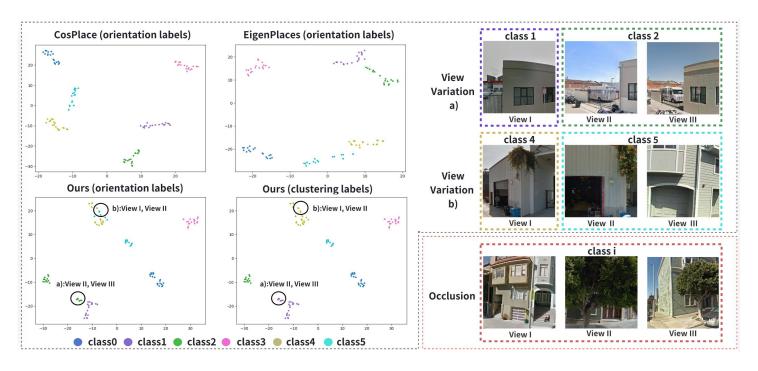
- (a) Viewpoint Variations: Simple geo-labels incorrectly group visually distinct scenes.
- (b) Occlusions: Fixed splits fail when occlusions are present, again grouping dissimilar images.

- The Core Problem: Inconsistent Supervision
 - Classification-based VPR is scalable, but suffers from Inconsistent Supervision: rigid labels misalign with true visual similarity.



In-Depth Analysis: Why Prior Methods Fail

- t-SNE Plots Confirm the Problem:
 - Prior work (like CosPlace, EigenPlaces) uses
 "orientation labels" which create flawed feature spaces.



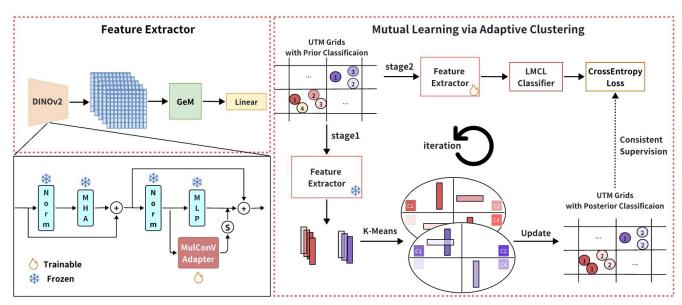
- This leads to two key failures:
 - Splitting: Visually similar views are split into different classes.
 - Merging: Visually distinct views are merged into the same class.
- Our Goal (Bottom-Right Plot):
 - Our "clustering labels" (bottom-left plot) demonstrate the correct approach: grouping images by their actual visual similarity.

Our Contribution: MutualVPR

- We propose MutualVPR: A mutual learning framework that resolves supervision inconsistencies via adaptive clustering.
- Our Core Contributions:
 - A mutual learning framework where feature learning and clustering co-evolve, effectively mitigating supervision inconsistency.
 - An adaptive clustering strategy that dynamically refines pseudo-labels based on visual semantics.
 - This handles view directions and occlusions without needing any orientation labels.
 - The model achieves SOTA performance on challenging VPR benchmarks, especially in occluded scenes.

Methodology: The MutualVPR Framework

- Our framework jointly refines the feature extractor and cluster assignments in a two-stage loop.
- Feature Extractor:
 - Uses a frozen DINOv2 backbone with a lightweight trainable MulConv adapter.
- Mutual Learning Iteration:
 - Stage 1 (Clustering): Use the current features to run K-Means clustering within each UTM grid. This generates dynamic "Posterior Classification" pseudo-labels based on visual similarity.
 - Stage 2 (Training): Use these updated, consistent pseudo-labels as supervision.
 Train the feature extractor using an LMCL Classifier.



This loop allows features and supervision (clusters) to co-evolve, creating a mutual learning cycle where they progressively reinforce each other.

Results: Comparison with SOTA Methods

Method	Desc.dim.	Train set	MSLS-val		Pitts30k		Pitts250k		Tokyo24/7		SF-XL-testv1	
			R@1	R@5	R@1	R@5	R@1	R@5	R@1	R@5	R@1	R@5
NetVLAD	131072	GSV-Cities	82.8	90.3	87.0	94.3	89.1	94.8	69.5	82.5		-
GeM	2048	GSV-Cities	72.5	82.7	84.5	92.8	85.1	93.4	60.3	73.7	25.6	35.5
AnyLoc(ViT-B+GeM)	768	1.5	32.6	41.6	77.7	88.9	79.3	89.5	71.7	87.6	33.3	45.2
ConvAP	2048	GSV-Cities	81.5	87.5	89.7	95.2	91.2	96.4	74.6	83.2	41.1	53.0
MixVPR	4096	GSV-Cities	87.1	91.4	91.6	95.5	94.3	98.1	87.0	93.3	69.2	77.4
CricaVPR*	4096	GSV-Cities	90.0	95.4	94.9	97.3	-		93.0	97.5	1.77	-
CricaVPR ₁	4096	GSV-Cities	88.5	95.1	91.6	95.7	94.3	98.6	89.5	94.6	72.8	80.1
CricaVPR ₁ (PCA)	512	GSV-Cities	87.1	92.6	90.4	94.9	92.5	97.1	87.4	92.9	68.4	77.1
BoQ [†]	512	GSV-Cities	88.4	93.9	93.1	96.1	93.8	97.5	91.9	95.5	79.6	85.9
SALAD [†]	512+32	GSV-Cities	88.5	94.2	90.6	95.1	92.1	97.0	92.3	95.1	70.2	77.7
SALAD+CM [†]	512+32	MSLS+GSV-Cities	90.4	96.2	90.9	95.9	93.2	97.8	92.8	96.2	78.4	85.4
EigenPlaces	512	SF-XL	88.1	92.9	92.3	96.1	93.5	97.5	84.8	94.0	83.8	89.6
CosPlace	512	SF-XL	84.4	90.2	89.6	94.9	90.4	96.6	76.5	89.2	64.8	73.1
MutualVPR (Ours)	512	SF-XL	89.2	95.1	90.9	96.4	92.6	97.9	92.4	96.6	80.8	86.4

- Key Finding 1: Balanced SOTA
 Performance
 - MutualVPR achieves highly competitive performance across standard benchmarks.

Madhad	Daga dim	SF-XL-Occlusion					
Method	Desc.dim.	R@1	R@5	R@10	R@20		
GeM	2048	11.8	15.8	17.1	22.4		
AnyLoc(ViT-B+GeM)	768	6.6	14.5	19.7	26.3		
ConvAP	2048	23.7	26.3	28.9	31.6		
MixVPR	4096	30.3	35.5	38.2	44.7		
CricaVPR ₁	4096	40.8	51.3	54.6	59.9		
BoQ^{\dagger}	512	38.2	50.0	53.3	59.2		
SALAD [†]	512+32	31.6	42.1	46.1	51.3		
SALAD+CM [†]	512+32	40.8	53.7	<u>58.3</u>	61.3		
EigenPlaces	512	36.8	51.8	56.6	59.2		
CosPlace	512	32.9	43.4	46.1	48.7		
No Classification	512	17.1	25.0	26.3	31.6		
MutualVPR (Ours)	512	47.4	65.8	71.1	73.7		

- Key Finding 2: Superior Occlusion Robustness
 - On the challenging SF-XL Occlusion benchmark, MutualVPR
 achieves 47.4% R@1——best
 performance!

Limitation & Future Work

• Limitation:

- The number of clusters (K) is a fixed hyperparameter. This is a limitation because the optimal K is not universal; it depends heavily on the backboneand the dataset's view distribution, which limits the model's adaptability.

• Future Work:

We will explore methods to dynamically adjust K based on dataset characteristics. This will
enhance the adaptive synergy between the clustering and representation learning, allowing the
model to find the optimal grouping granularity by itself.

Thank you!

