### Optimal Control for Transformer Architectures: Enhancing Generalization, Robustness and Efficiency

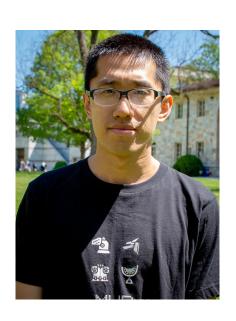
#### **Neural Information Processing Systems (NeurIPS) 2025**

Paper: <a href="https://arxiv.org/pdf/2505.13499">https://arxiv.org/pdf/2505.13499</a>

Code: https://github.com/KelvinKan/OT-Transformer



Kelvin Kan<sup>1</sup>



Xingjian Li<sup>2</sup>



Benjamin Zhang<sup>3</sup>



Tuhin Sahai<sup>4</sup>



Stanley Osher<sup>1</sup>



Markos Katsoulakis<sup>5</sup>







THE UNIVERSITY

of NORTH CAROLINA

at CHAPEL HILL





## Overview

#### Transformers

- State-of-the-art in various applications
- Effective architectures often discovered by empirical trial and error

#### Our Framework

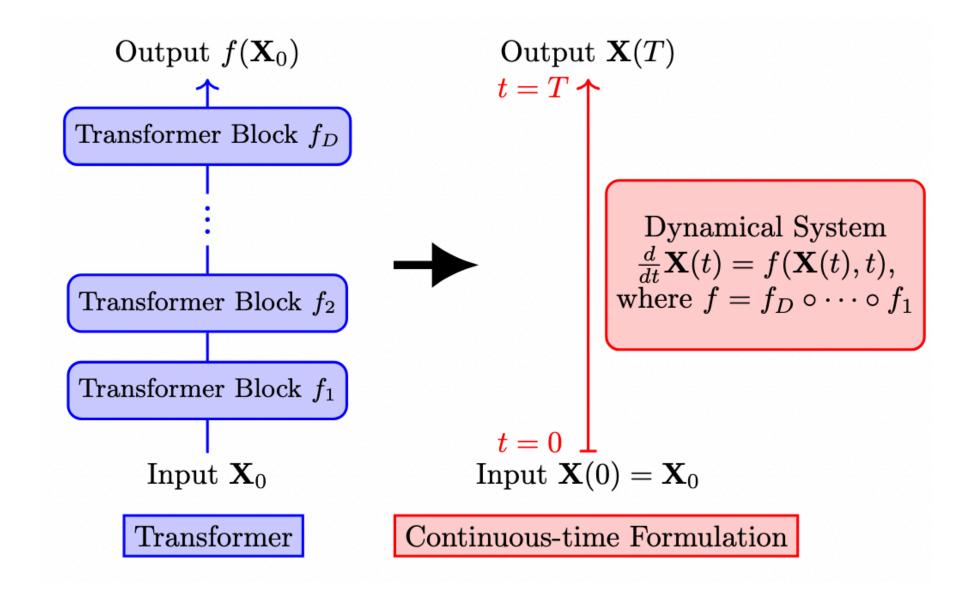
- Analyze Transformers' training and architecture using optimal control theory
- Propose our model: OT-Transformer
- Achieve theory-grounded improvements

## **OT-Transformer Model**

• Use an existing Transformer for *f*:

$$\frac{d\mathbf{X}(t)}{dt} = f(\mathbf{X}(t), t; \theta), \text{ for } t \in [0, T], \text{ with } \mathbf{X}(0) = \mathbf{X}_0 \text{ (hidden state dynamics)}$$

- Leverage expressive power & retain (task-specific) benefits of Transformer variants
- Plug-and-play: only requires slight code modification

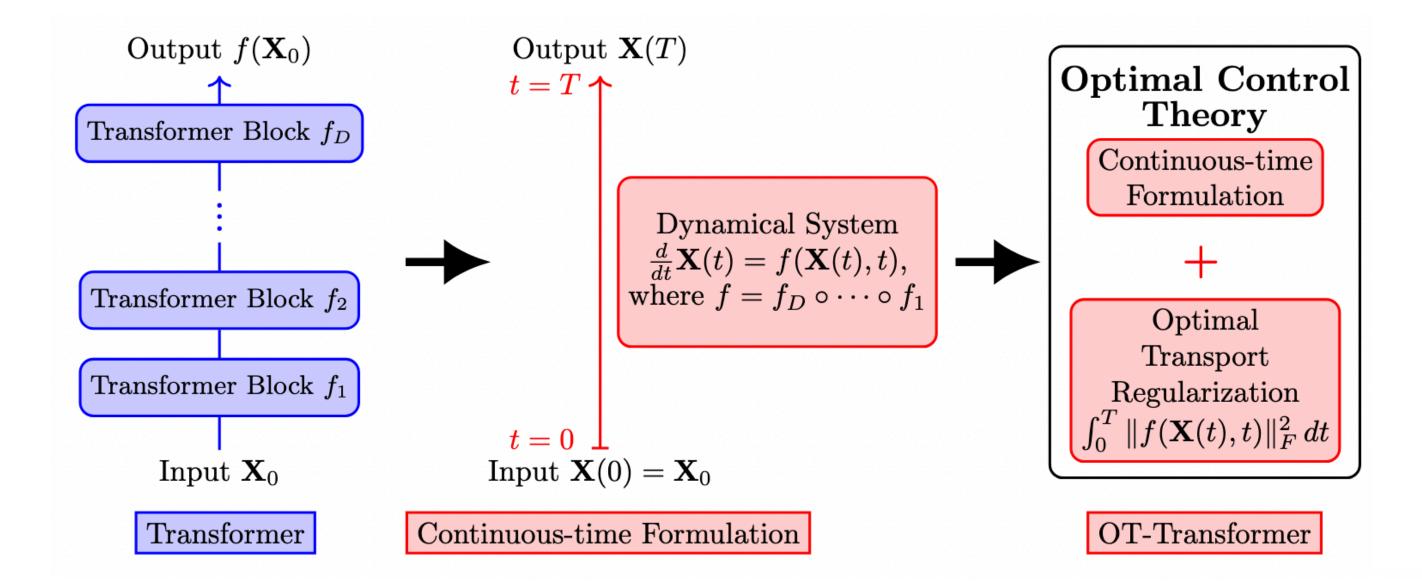


## **OT-Transformer Model**

Training formulation

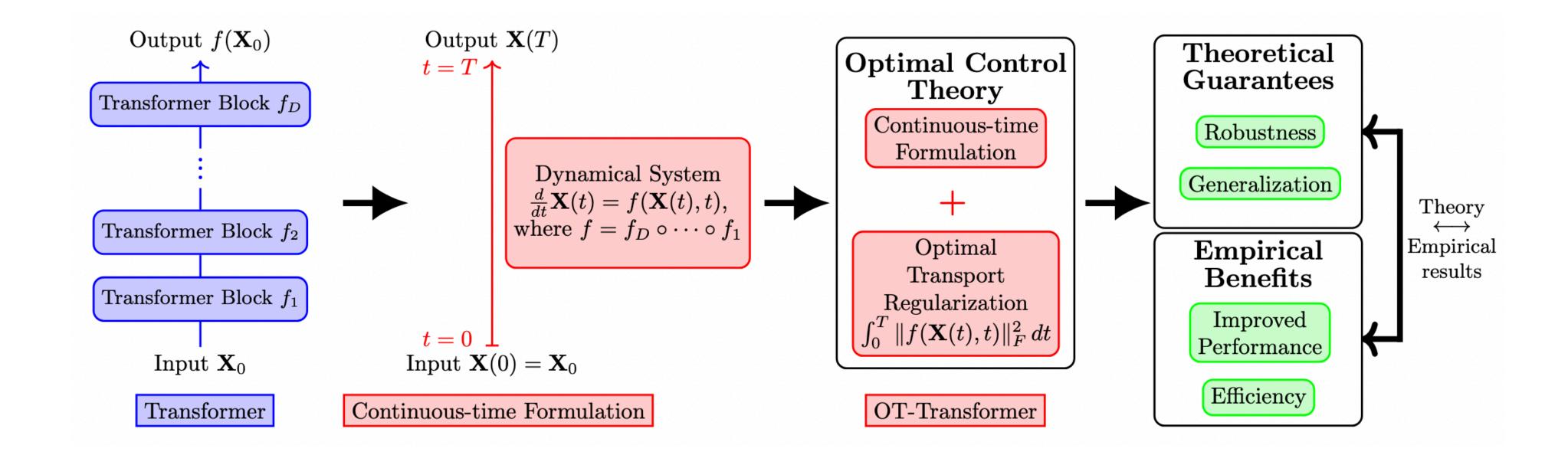
$$\min_{\theta,\gamma} \mathbb{E}_{(\mathbf{X}_0,\mathbf{y})} \bigg\{ G(\mathbf{X}(T),\mathbf{y};\gamma) + \frac{\lambda}{2} \int_0^T \left\| f(\mathbf{X}(t),t;\theta) \right\|_F^2 dt \bigg\},$$
 subject to 
$$\frac{d\mathbf{X}(t)}{dt} = f(\mathbf{X}(t),t;\theta), \quad \text{for} \quad t \in [0,T], \quad \text{with} \quad \mathbf{X}(0) = \mathbf{X}_0 \quad \text{(hidden state dynamics)}$$

- First term G: data-fitting loss; Second term: OT regularization
- Other regularizations can be used



## **OT-Transformer Model**

- OC theory ⇒ models with highly favorable properties
- Theory ⇔ empirical results



## Main Theoretical Result

Stable forward propagation

**Theorem 1.** For input-label pairs  $(\mathbf{X}_1(0),\mathbf{y}_1)$  and  $(\mathbf{X}_2(0),\mathbf{y}_2)$ , the corresponding model outputs  $\tilde{\mathbf{y}}_1$  and  $\tilde{\mathbf{y}}_2$  satisfy

$$\|\tilde{\mathbf{y}}_{1} - \tilde{\mathbf{y}}_{2}\|_{2} \le C_{1} \|\mathbf{X}_{1}(0) - \mathbf{X}_{2}(0)\|_{F} + C_{2} \|\mathbf{y}_{1} - \mathbf{y}_{2}\|_{2}$$
model outputs
Inputs
True labels

- If inputs & true labels are similar, then model outputs are similar
- → Robustness
  - Robustness to Input Perturbations
  - Distributional Robustness
- → Generalization
  - In-distribution Generalization
  - Out-of-distribution Generalization

# **Experimental Results**

- Consistently improves performance while enhancing parameter efficiency
- Experimental results ⇔ theory on generalization and robustness
- Implementation efficiency: theory-driven improvements, instead of trial and error

| Experiment                         | Method                       | Para. Count      | <b>Test Loss</b>                           |
|------------------------------------|------------------------------|------------------|--------------------------------------------|
| nanoGPT on Shakespeare (Charlevel) | Baseline<br>OT-Trans. (Ours) | 10.65M<br>6.16M  | $2.68 \pm 0.006$ $1.44 \pm 0.005$          |
| GPT-2 on Shakespeare (Word-level)  | Baseline<br>OT-Trans. (Ours) | 123.7M<br>123.7M | $5.18 \pm 0.032$ $\mathbf{4.96 \pm 0.012}$ |
| GPT-2 on OpenWebText (9B tokens)   | Baseline<br>OT-Trans. (Ours) | 123.7M<br>123.7M | 3.21<br><b>3.03</b>                        |

| Experiment                         | Method                       | Para. Count                    | Test Accuracy                              |  |
|------------------------------------|------------------------------|--------------------------------|--------------------------------------------|--|
| Point Cloud Classification         | Baseline<br>OT-Trans. (Ours) | 0.86M<br>0.65M                 | $87.4\% \pm 0.45\%$<br>$89.9\% \pm 0.42\%$ |  |
| Image Classification (MNIST)       | Baseline<br>OT-Trans. (Ours) | 93K<br>18K                     | $93.0\% \pm 0.69\%$ $97.1\% \pm 0.16\%$    |  |
| Image Classification (Cats & Dogs) | Baseline<br>OT-Trans. (Ours) | 1.77 <b>M</b><br>1.48 <b>M</b> | $77.6\% \pm 0.86\%$ $79.0\% \pm 0.31\%$    |  |
| Sentiment Analysis                 | Baseline<br>OT-Trans. (Ours) | 4.74M<br>2.37M                 | $83.9\% \pm 0.26\%$<br>$84.6\% \pm 0.55\%$ |  |

# Theory: Empirical Validation

#### Experiment 1: Point cloud classification with point dropout (test accuracy)

| Experiment  | Metric/drop rate                      | 0.0                                        | 0.01                                       | 0.05                                       | 0.1                                        | 0.2                                              | 0.5                        |
|-------------|---------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------------|----------------------------|
| Point cloud | Acc. (±std) Base.<br>Acc. (±std) Ours | $86.6\% \pm 0.45\%$<br>$89.3\% \pm 0.55\%$ | $86.6\% \pm 0.48\%$<br>$89.3\% \pm 0.55\%$ | $85.8\% \pm 0.60\%$<br>$88.8\% \pm 0.34\%$ | $84.3\% \pm 0.69\%$<br>$87.6\% \pm 0.62\%$ | $76.9\% \pm 0.88\%$<br><b>83.9%</b> $\pm 0.80\%$ | 34.5%±1.94%<br>55.4%±4.87% |
| (dropout)   | Drop $(\downarrow)$ Base.             | <b>09.3</b> % ±0.55%<br>−                  | 0.0%                                       | 0.8%                                       | 2.3%                                       | 9.7%                                             | 52.1%                      |
|             | Drop $(\downarrow)$ Ours              | _                                          | 0.0%                                       | 0.5%                                       | <b>1.7%</b>                                | <b>5.4%</b>                                      | <b>33.9%</b>               |

- Added typical noise per application
- Noise absent in training data
- Tests on robustness and out-of-distribution generalization
- Much better under high noise

#### **Experiment 2: NanoGPT with random text replacement** (test loss)

| Experiment                | Metric/replace rate                                                      | 0.0                           | 0.005                                       | 0.01                                        | 0.05                                     | 0.1                                      |
|---------------------------|--------------------------------------------------------------------------|-------------------------------|---------------------------------------------|---------------------------------------------|------------------------------------------|------------------------------------------|
| NanoGPT<br>(text replace) | Loss (±std) Base.<br>Loss (±std) Ours<br>Drop (↓) Base.<br>Drop (↓) Ours | 2.68±0.004<br>1.44±0.005<br>- | $2.78\pm0.004$ $1.49\pm0.004$ $0.10$ $0.05$ | $2.88\pm0.004$ $1.55\pm0.003$ $0.20$ $0.11$ | 3.65±0.004<br>1.95±0.010<br>0.97<br>0.51 | 4.60±0.005<br>2.42±0.022<br>1.92<br>0.98 |

#### Experiments 3 & 4: MNIST with Gaussian/uniform noise (test accuracy)

| Experiment              | Metric/noise level                                                                                             | 0.0                                       | 0.01                                                                                   | 0.05                                                         | 0.1                                                         | 0.2                                                         | 0.5                                                         |
|-------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| MNIST<br>(Gauss. noise) | Acc. ( $\pm$ std) Base.<br>Acc. ( $\pm$ std) Ours<br>Drop ( $\downarrow$ ) Base.<br>Drop ( $\downarrow$ ) Ours | 92.97%±0.67%<br><b>97.05%</b> ±0.15%<br>– | $92.99\% \pm 0.66\%$ $97.05\% \pm 0.16\%$ $-0.02\%$ $0.00\%$                           | $92.96\% \pm 0.69\%$ $96.99\% \pm 0.18\%$ $0.01\%$ $0.06\%$  | $92.76\% \pm 0.72\%$ $96.89\% \pm 0.15\%$ $0.21\%$ $0.16\%$ | $91.70\% \pm 0.68\%$ $96.39\% \pm 0.11\%$ $1.27\%$ $0.66\%$ | 80.64%±1.58%<br>90.10%±1.10%<br>12.33%<br>6.95%             |
| MNIST<br>(Uni. noise)   | Acc. $(\pm std)$ Base.<br>Acc. $(\pm std)$ Ours<br>Drop $(\downarrow)$ Base.<br>Drop $(\downarrow)$ Ours       | 92.97%±0.67%<br><b>97.05%</b> ±0.15%<br>— | $\begin{array}{c} 92.99\% \pm 0.65\% \\ \mathbf{97.03\%} \pm 0.14\% \\    \end{array}$ | $92.98\% \pm 0.63\%$ $97.00\% \pm 0.15\%$ $-0.02\%$ $0.05\%$ | $92.90\% \pm 0.58\%$ $96.97\% \pm 0.14\%$ $0.07\%$ $0.08\%$ | $92.64\% \pm 0.57\%$ $96.79\% \pm 0.16\%$ $0.33\%$ $0.26\%$ | $90.02\% \pm 0.45\%$ $95.57\% \pm 0.11\%$ $2.95\%$ $1.48\%$ |

# Discussion & Summary

- OC framework for Transformer architecture and training
- OT-Transformer: Plug-and-play model grounded in theoretical guarantees
- Empirical results ⇔ theory
- Future directions/Ongoing work:
  - OC framework to analyze other components
  - e.g., layer normalization, attention mechanism, other regularizers