

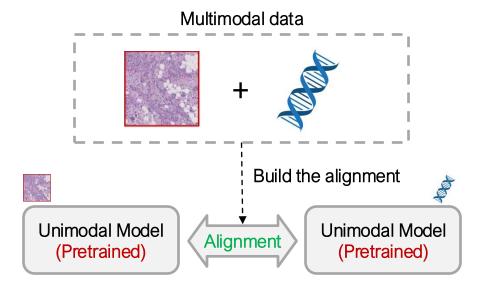
With Limited Data for Multimodal Alignment, Let the **STRUCTURE** Guide You

Fabian Gröger*, Shuo Wen*, Huyen Le, Maria Brbić

Can We Create Multimodal Models by Aligning Pretrained Unimodal Models?

Train from scratch Multimodal data Train Multimodal Model (Randomly initialized)

Aligning pretrained models



Current Alignment Still Require Large Amount of Paired Data

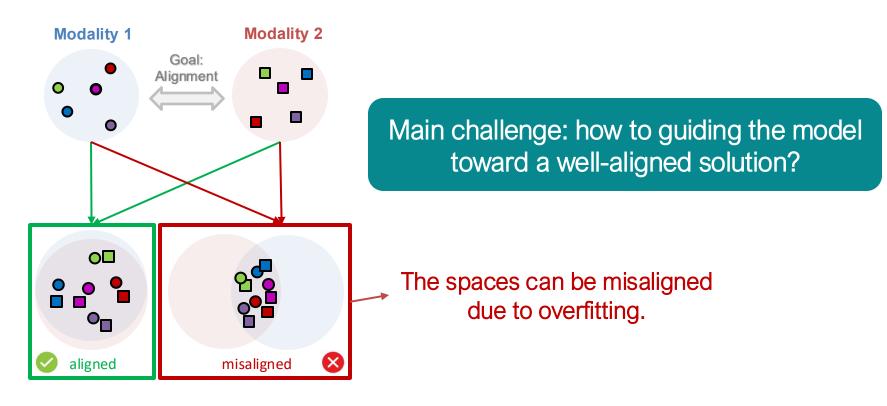
Millions of paired samples are often unavailable in many domains like healthcare and biology, where collecting high-quality multimodal data is expensive and labor-intensive.

Can We Align Pretrained Unimodal

Models with Limited Data?

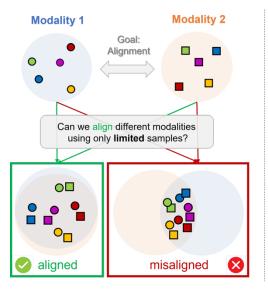
Shulakov*. CVPR '25

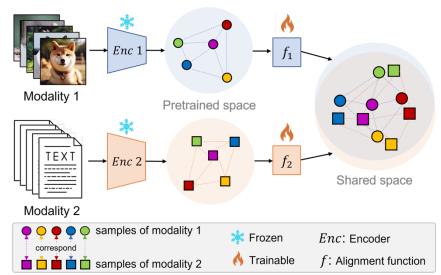
Can We Align Pretrained Unimodal Models with Limited Data?



Method: Overview

Key idea: Preserves the neighbourhood geometry of the latent space of the pretrained unimodal encoders.



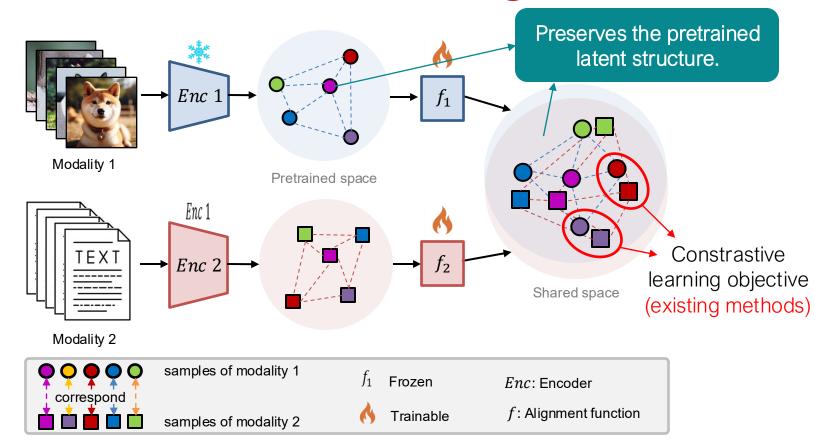


Fabian Gröger

Shuo Wen

Huyen Le

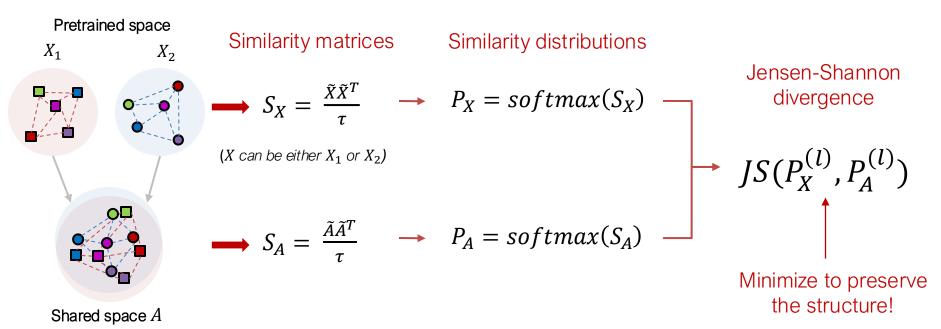
Method: STRUCTURE Regularization



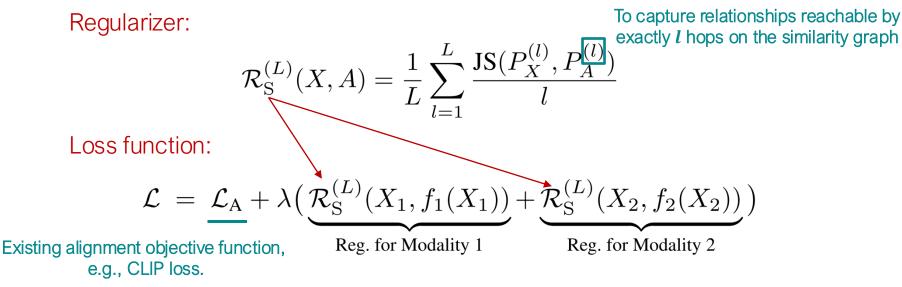
Method: STRUCTURE Regularization

Key idea: Preserve the structure of pretrained space!

Data points that are similar to each other in the pretrained space should remain similar in the aligned space.



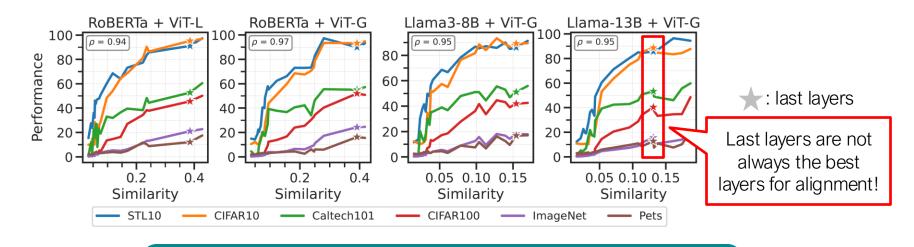
Method: STRUCTURE Regularization



STRUCTURE Regularization can be easily Incorporated into existing alignment methods!

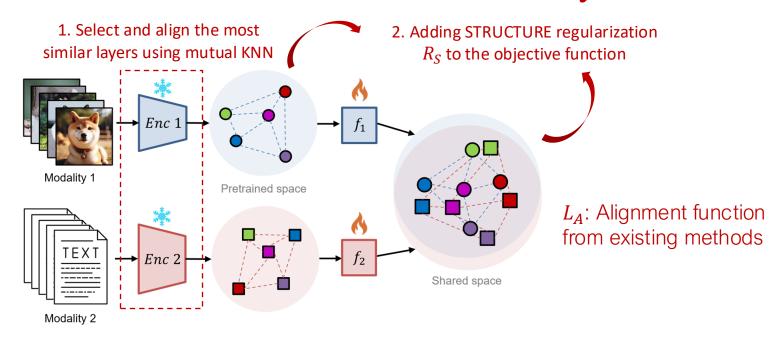
Method: Layer selection

Finding: The alignment quality (model performance) is highly correlated with the layer similarity (measured by mutual KNN)!



Key idea: Align most similar layers (which is not necessarily the last ones)!

Method: Summary



Both components can be easily Incorporated into existing alignment methods!

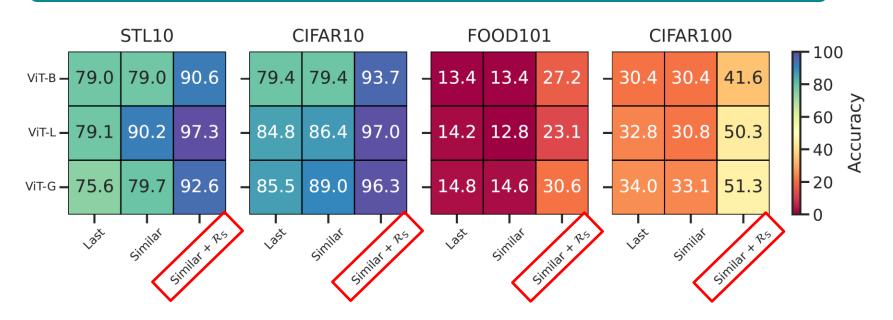
Main Results

Existing method benefit a lot from incorporating with our STRUCTURE regularization (R_s) and layer selection strategy.

	Zero-shot Classification (Accuracy)									Retrieval (R@1)	
	Method	STL10	CIFAR10	Caltech101	Food101	CIFAR100	ImageNet	Pets	Flickr I2T	Flickr T2I	
	Linear + Last [10]	75.6	85.5	37.9	14.8	34.0	9.9	7.0	32.5	22.1	
2.5% improv.	Linear + Similar	79.7	89.0	39.5	14.6	33.1	10.5	4.9	35.3	24.0	
68.4% improv.	Linear + Similar + \mathcal{R}_{S}	<u>92.6</u>	<u>96.3</u>	<u>56.0</u>	30.6	<u>51.3</u>	<u>24.7</u>	<u>13.2</u>	<u>65.8</u>	<u>53.7</u>	
	MLP + Last [9]	76.6	79.2	38.2	15.6	35.3	10.6	5.3	31.6	20.3	
4.8% improv.	MLP + Similar	84.0	81.5	38.8	17.1	34.5	11.4	6.1	36.4	25.0	
74.0% improv.	$\textit{MLP} + \textit{Similar} + \mathcal{R}_{\mathrm{S}}$	92.7	<u>96.3</u>	<u>56.0</u>	<u>30.5</u>	<u>52.1</u>	<u>25.1</u>	<u>13.2</u>	65.9	53.8	
	CSA + Last [24]	77.9	78.5	31.4	29.3	47.4	23.2	14.4	47.0	38.3	
2.0% improv.	CSA + Similar	80.0	80.8	33.6	28.0	47.4	23.3	14.9	48.6	39.0	
26.8% improv.	$CSA + Similar + \mathcal{R}_{\mathrm{S}}$	<u>91.7</u>	97.2	61.5	28.6	56.4	26.8	17.0	<u>56.1</u>	<u>43.1</u>	

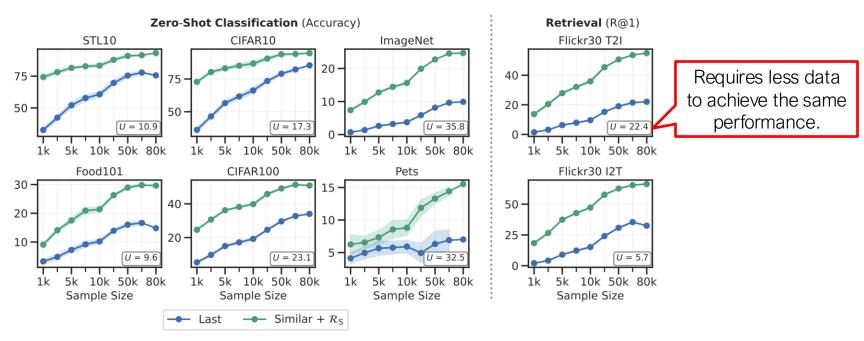
Across Different Model Combinations.

The same improvement exists across different model combinations.



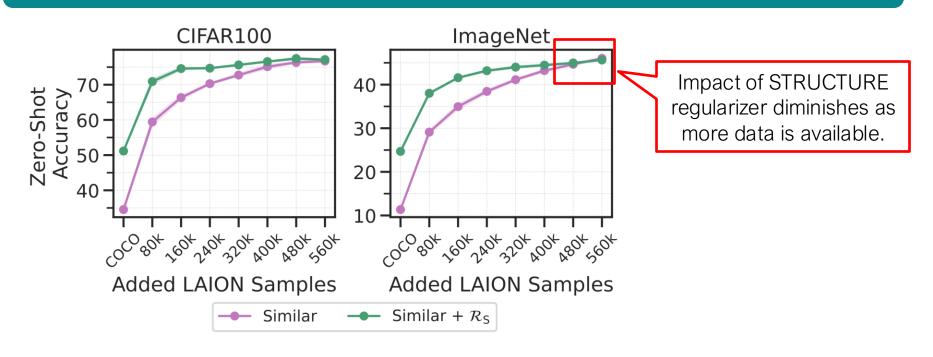
Scaling Down the Training Data

Proposed approach works well even with less data.



Scaling Up the Training Data

Proposed approach brings the most benefit with limited data.

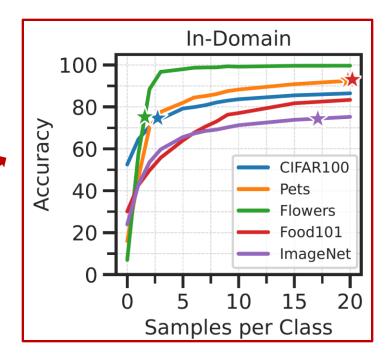


Train-test Data Distribution Shift

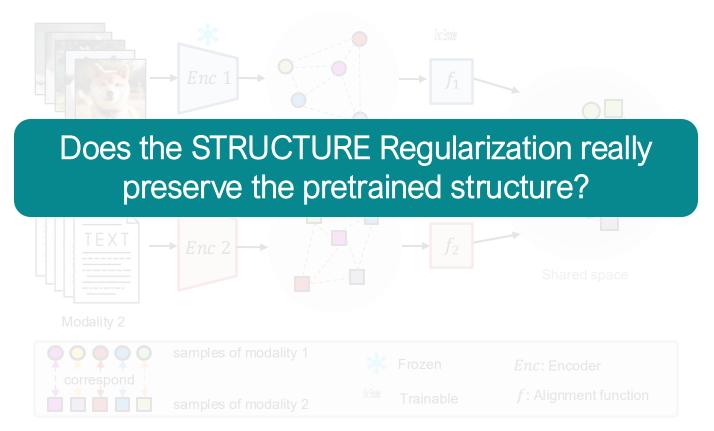
Despite the advantages of the proposed alignment approach, in low-data regimes, performance remains low on certain datasets:

Method	Food101	CIFAR100	ImageNet	Pets
Linear + Last [10]	14.8	34.0	9.9	7.0
Linear + Similar Linear + Similar + \mathcal{R}_{S}	14.6 30.6	33.1 51.3	10.5 24.7	4.9 13.2
		<u> </u>		

Include a small number of in-domain samples into the training set can significantly improve the performance!

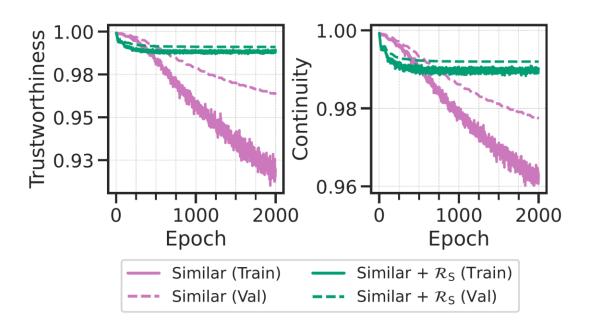


Recap: STRUCTURE Regularization



Neighborhood preservation

STRUCTURE Regularization preserves the pretrained structure!



With Limited Data for Multimodal Alignment, Let the **STRUCTURE** Guide You

Fabian Gröger*, Shuo Wen*, Huyen Le, Maria Brbić

