

LORE: Lagrangian-Optimized Robust Embeddings for Visual Encoders

Borna Khodabandeh*1. Amirabbas Afzali*2. Amirhossein Afsharrad^{1,2}. Seyed Shahabeddin Mousavi^{1,2}, Sanjay Lall¹, Sajjad Amini³, Seyed-Mohsen Moosavi-Dezfooli⁴

¹Stanford University, ²Aktus AI, ³University of Massachusetts Amherst, ⁴Apple

Motivation

Challenges in Visual Encoders:

• Despite their success, visual encoders are still vulnerable to adversarial perturbations.

Motivation

Challenges in Visual Encoders:

- Despite their success, visual encoders are still vulnerable to adversarial perturbations.
- Existing unsupervised adversarial fine-tuning methods show unstable training and an unfavorable robustness—accuracy trade-off.

FARE [1] proposes unsupervised fine-tuning of the CLIP vision encoder by aligning clean and adversarial embeddings:

$$\mathcal{L}_{\mathsf{FARE}}(\phi_{\theta}, x) = \max_{\delta: ||\delta||_{\infty} \le \varepsilon} \left\| \phi_{\theta}(x + \delta) - \phi_{\theta_{0}}(x) \right\|_{2}^{2}.$$

FARE [1] proposes unsupervised fine-tuning of the CLIP vision encoder by aligning clean and adversarial embeddings:

$$\mathcal{L}_{\mathsf{FARE}}(\phi_{\theta}, x) = \max_{\delta: \|\delta\|_{\infty} < \varepsilon} \left\| \phi_{\theta}(x + \delta) - \phi_{\theta_{0}}(x) \right\|_{2}^{2}.$$

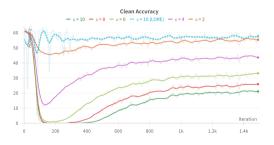
What is the problem?

FARE [1] proposes unsupervised fine-tuning of the CLIP vision encoder by aligning clean and adversarial embeddings:

$$\mathcal{L}_{\mathsf{FARE}}(\phi_{\theta}, x) = \max_{\delta: ||\delta||_{\infty} < \varepsilon} \left\| \phi_{\theta}(x + \delta) - \phi_{\theta_{0}}(x) \right\|_{2}^{2}.$$

What is the problem?

(i) Early accuracy degradation



Clean accuracy degradation under different perturbations.

FARE [1] proposes unsupervised fine-tuning of the CLIP vision encoder by aligning clean and adversarial embeddings:

$$\mathcal{L}_{\mathsf{FARE}}(\phi_{\theta}, x) = \max_{\delta: \|\delta\|_{\infty} < \varepsilon} \left\| \phi_{\theta}(x + \delta) - \phi_{\theta_{0}}(x) \right\|_{2}^{2}.$$

What is the problem?

(i) Early accuracy degradation

Clean accuracy degradation under different perturbations.

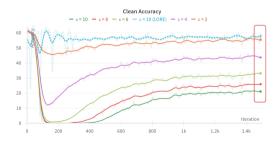
FARE [1] proposes unsupervised fine-tuning of the CLIP vision encoder by aligning clean and adversarial embeddings:

$$\mathcal{L}_{\mathsf{FARE}}(\phi_{\theta}, x) = \max_{\delta: \|\delta\|_{\infty} \le \varepsilon} \|\phi_{\theta}(x + \delta) - \phi_{\theta_{0}}(x)\|_{2}^{2}.$$

What is the problem?

(i) Early accuracy degradation

➤ Significant drop in clean accuracy at the convergence point.



Clean accuracy degradation under different perturbations.

What is the problem?

(i) Early accuracy degradation

What is the problem?

(i) Early accuracy degradation

A simple solution:

Naively adding a regularization term helps preserve clean accuracy:

$$\mathcal{L}_{\mathsf{FARE-reg}}(\phi_{\theta}, x) = \max_{\delta: \|\delta\|_{\infty} \leq \varepsilon} \left\| \phi_{\theta}(x + \delta) - \phi_{\theta_0}(x) \right\|_2^2 + \lambda \|\phi_{\theta}(x) - \phi_{\mathsf{org}}(x)\|_2^2,$$

What is the problem?

(i) Early accuracy degradation

A simple solution:

Naively adding a regularization term helps preserve clean accuracy:

$$\mathcal{L}_{\mathsf{FARE-reg}}(\phi_{\theta}, x) = \max_{\delta: \|\delta\|_{\infty} \leq \varepsilon} \left\| \phi_{\theta}(x + \delta) - \phi_{\theta_0}(x) \right\|_2^2 + \lambda \|\phi_{\theta}(x) - \phi_{\mathsf{org}}(x)\|_2^2,$$

This time, what is the problem?

What is the problem?

(i) Early accuracy degradation

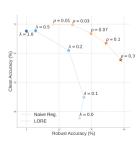
A simple solution:

Naively adding a regularization term helps preserve clean accuracy:

$$\mathcal{L}_{\mathsf{FARE-reg}}(\phi_{\theta}, x) = \max_{\delta: \|\delta\|_{\infty} \leq \varepsilon} \left\| \phi_{\theta}(x + \delta) - \phi_{\theta_0}(x) \right\|_2^2 + \lambda \|\phi_{\theta}(x) - \phi_{\mathsf{org}}(x)\|_2^2,$$

This time, what is the problem?

(ii) Practical ineffectiveness of naive regularization



Robustness-accuracy trade-off.

What is the problem?

(i) Early accuracy degradation

A simple solution:

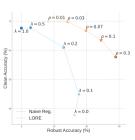
Naively adding a regularization term helps preserve clean accuracy:

$$\mathcal{L}_{\mathsf{FARE-reg}}(\phi_{\theta}, x) = \max_{\delta: \|\delta\|_{\infty} \leq \varepsilon} \left\| \phi_{\theta}(x + \delta) - \phi_{\theta_0}(x) \right\|_2^2 + \lambda \|\phi_{\theta}(x) - \phi_{\mathsf{org}}(x)\|_2^2,$$

This time, what is the problem?

(ii) Practical ineffectiveness of naive regularization

▶ It introduces a steep robustness trade-off.



LORE: Lagrangian-Optimized Robust Embeddings

• Main idea. Unsupervised extension of constrained optimization, keeping the fine-tuned encoder close to the pre-trained model.

LORE: Lagrangian-Optimized Robust Embeddings

 Main idea. Unsupervised extension of constrained optimization, keeping the fine-tuned encoder close to the pre-trained model.

 This yields a semi-infinite constrained objective that balances robustness and nominal performance stability, as formulated in:

$$\min_{\theta \in \Theta} \mathbb{E}_{x \sim \mathcal{D}} \left[\max_{\delta \in \Delta} d(\phi_{\theta}(x + \delta), \phi_{\theta_{0}}(x)) \right],$$
s.t.
$$d(\phi_{\theta}(x), \phi_{\theta_{0}}(x)) \leq \rho \, m(x), \text{ for almost every } x \in \mathcal{D}.$$
(1)

LORE: Lagrangian-Optimized Robust Embeddings

 Main idea. Unsupervised extension of constrained optimization, keeping the fine-tuned encoder close to the pre-trained model.

 This yields a semi-infinite constrained objective that balances robustness and nominal performance stability, as formulated in:

$$\min_{\theta \in \Theta} \mathbb{E}_{x \sim \mathcal{D}} \left[\max_{\delta \in \Delta} d(\phi_{\theta}(x + \delta), \phi_{\theta_{0}}(x)) \right],$$
s.t.
$$d(\phi_{\theta}(x), \phi_{\theta_{0}}(x)) \leq \rho \, m(x), \text{ for almost every } x \in \mathcal{D}.$$
(1)

 \bullet How to handle infinite constraints? \rightarrow Functional Lagrangian

Solving the Constrained Problem

• We employ **Lagrangian duality** to approximate the solution:

$$\max_{\omega \in \Omega} \min_{\theta \in \Theta} \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} \left[\max_{\delta \in \Delta} \|\phi_{\theta}(\mathbf{x} + \delta) - \phi_{\theta_0}(\mathbf{x})\|_2^2 + \lambda_{\omega}(\mathbf{x}) \left(\|\phi_{\theta}(\mathbf{x}) - \phi_{\theta_0}(\mathbf{x})\|_2^2 - \rho \|\phi_{\theta_0}(\mathbf{x})\|_2^2 \right) \right]. \tag{2}$$

Solving the Constrained Problem

• We employ **Lagrangian duality** to approximate the solution:

$$\max_{\omega \in \Omega} \min_{\theta \in \Theta} \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} \left[\max_{\delta \in \Delta} \|\phi_{\theta}(\mathbf{x} + \delta) - \phi_{\theta_0}(\mathbf{x})\|_2^2 + \lambda_{\omega}(\mathbf{x}) \left(\|\phi_{\theta}(\mathbf{x}) - \phi_{\theta_0}(\mathbf{x})\|_2^2 - \rho \|\phi_{\theta_0}(\mathbf{x})\|_2^2 \right) \right]. \tag{2}$$

• Optimization. During training, adversarial samples are generated for each batch, followed by K primal updates of encoder parameters θ and one dual update of ω .

- 1. Controlling the Robustness-Accuracy Trade-off
- 2. Out-of-Distribution Robustness
- 3. Image Classification
 - Zero-shot Image Classification
 - In-domain Image Classification
 - Robustness at High Adversarial Intensity

1. Controlling the Robustness–Accuracy Trade-off

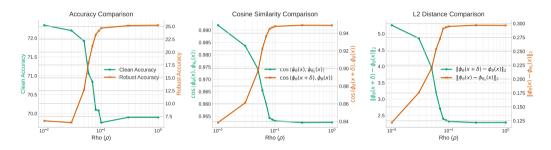


Figure 1: Influence of constraint threshold ρ on model behavior. As ρ increases, robustness improves at the cost of clean data accuracy, cosine alignment, and embedding fidelity, highlighting the effectiveness of controlling the trade-off between robustness and fidelity by tuning ρ in LORE.

9

2. Out-of-Distribution Robustness

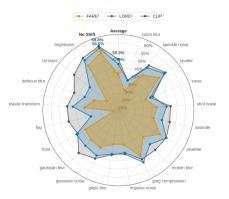


Figure 2: Robustness to common corruptions on ImageNet-C as an OOD evaluation.

3. Zero-shot Image Classification

Table 3: A comprehensive evaluation of clean and adversarial performance is conducted across various image classification datasets using the VTT-B/32 CLIP model. All models are trained on ImageNet and evaluated in a zero-shot setting across diverse benchmarks. Our method consistently achieves a performance increase (†) relative to the corresponding FARE models.

			Zero-shot datasets														
Eval.	Vision encoder	ImageNet	CalTech	Cars	CIFAR10	CIFAR100	DITO	EuroSAT	FGVC	Flowers	ImageNet-R	ImageNet-S	PCAM	OxfordPets	STL-10	Ave Zero	
	CLIP	59.8	84.1	59.6	89.7	63.3	44.4	46.1	19.6	66.3	69.3	42.3	62.3	87.5	97.2	64.0	
	$FARE^1$	56.6	84.0	56.3	86.4	61.1	40.5	27.2	18.1	62.0	66.4	40.5	55.5	86.1	95.8	60.0	
G	$LORE^1$	57.4	84.4	55.9	88.5	64.5	40.1	29.9	16.7	61.3	67.2	41.5	53.8	86.9	96.3	60.5	10.5
clean	$FARE^2$	52.9	82.2	49.7	76.3	51.1	36.4	18.4	15.7	53.3	60.4	35.9	48.2	82.7	93.0	54.1	
0	$LORE^2$	55.7	83.0	51.0	83.4	59.7	37.2	23.0	15.9	54.5	63.4	39.3	51.2	84.3	94.5	57.0	†2.9
	FARE ⁴	42.6	78.1	36.5	55.9	35.8	28.8	15.7	10.6	36.1	49.3	27.1	50.0	71.8	85.6	44.7	
	$LORE^4$	50.1	80.3	40.1	72.4	49.6	32.4	17.7	11.4	39.7	55.1	33.6	50.0	79.3	90.4	50.2	15.5
	CLIP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	
	$FARE^1$	27.8	68.6	16.1	61.0	35.6	22.5	6.1	2.9	30.6	34.4	22.5	24.7	55.8	82.2	35.6	
0.	$LORE^1$	32.9	71.0	18.7	67.1	40.0	23.7	9.4	4.2	33.5	37.6	24.8	28.3	60.5	84.1	38.7	13.1
ī	$FARE^2$	34.3	75.2	22.6	60.1	35.4	24.7	12.6	5.3	33.9	39.7	24.1	30.4	64.8	83.3	39.4	
to	$LORE^2$	39.3	76.3	23.3	67.0	43.2	26.4	12.3	6.5	35.8	42.4	26.4	39.0	68.5	85.6	42.5	†3.1
	FARE ⁴	33.2	74.8	21.4	44.9	28.0	22.4	14.0	5.8	27.3	37.1	21.3	50.2	59.3	77.7	37.2	
	$LORE^4$	41.8	77.2	24.1	61.2	39.9	24.5	14.3	7.8	30.2	41.6	25.5	50.2	68.8	83.2	42.2	15.0
	CLIP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	
	$FARE^1$	8.0	43.5	1.9	31.0	14.7	12.9	0.6	0.2	6.8	13.4	11.7	14.1	15.9	54.9	17.0	
2.0	$LORE^1$	13.1	49.0	3.3	37.9	19.0	14.2	2.5	0.5	10.1	17.6	13.1	19.1	23.1	61.2	20.8	†3.8
ï	$FARE^2$	19.3	59.9	7.7	41.2	22.8	17.8	9.6	1.5	16.4	24.2	15.9	23.4	38.6	68.6	26.7	
to	$LORE^2$	24.0	63.3	8.6	47.2	27.2	18.2	10.6	1.7	18.5	26.0	18.4	28.0	44.4	73.1	29.6	12.9
	FARE ⁴	24.1	65.5	10.4	36.0	21.6	18.8	12.3	2.7	17.9	27.7	15.8	50.0	44.4	68.8	30.1	
	LORE ⁴	32.6	69.5	12.4	50.8	29.6	20.9	13.0	3.3	21.6	32.3	20.0	50.1	55.9	76.1	35.0	↑4.9
	CLIP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	
	FARE ¹	0.3	6.3	0.0	1.7	2.0	2.3	0.0	0.0	0.1	2.6	2.4	0.9	0.0	5.3	1.8	
4.0	LORE ¹	0.7	9.7	0.0	3.5	3.1	4.0	0.0	0.0	0.2	3.8	2.8	2.7	0.0	9.4	3.0	†1.2
11	FARE ²	3.2	27.5	0.5	12.3	7.0	7.7	4.3	0.0	2.4	6.8	5.1	15.8	3.0	30.1	9.4	
to .	LORE ²	5.7	31.1	0.7	13.0	8.2	9.7	0.8	0.0	3.1	8.3	6.5	18.2	7.2	33.5	10.8	†1.4
	FARE ⁴	10.7	46.3	1.5	19.7	11.8	11.9	10.2	0.6	6.4	11.4	8.7	45.2	16.2	46.1	18.2	
	$LORE^4$	17.8	54.2	2.8	27.4	16.8	14.4	10.0	0.6	8.0	16.4	11.7	48.4	25.5	56.1	22.5	†4.3

3. In-domain Image Classification

Table 1: Clean and adversarial accuracy for in-domain image classification on ImageNet-100 across different CLIP vision encoders, evaluated using the APGD attack.

Method	Backbone	Clean	$\varepsilon = 1$	$\varepsilon=2$	$\varepsilon = 4$	$\varepsilon = 8$
FARE ²	ViT-B/16	70.40	53.0	34.9	8.8	0.06
$LORE^2$	ViT-B/16	74.7	62.3	47.7	20.8	0.74
$FARE^4$	ViT-B/16	58.1	47.7	37.1	19.0	2.22
$LORE^4$	ViT-B/16	71.5	62.3	53.3	34.7	9.06
FARE ²	ViT-B/32 LAION	65.4	41.0	19.0	2.02	0.02
$LORE^2$	ViT-B/32 LAION	70.2	51.8	31.4	7.26	0.04
$FARE^4$	ViT-B/32 LAION	52.7	36.7	23.4	6.72	0.20
$LORE^4$	ViT-B/32 LAION	68.4	44.7	29.6	10.7	0.62
FARE ²	ConvNeXt-B	74.2	61.6	46.1	16.7	0.22
$LORE^2$	ConvNeXt-B	75.6	64.9	52.4	25.6	1.04
$FARE^4$	ConvNeXt-B	70.6	61.6	52.3	32.7	6.48
LORE ⁴	ConvNeXt-B	73.5	66.0	58.1	40.3	10.4

Table 2: Clean and adversarial accuracy for in-domain image classification on ImageNet across different DI-NOv2 variants. Adversarial robustness is evaluated using APGD attack.

Method	Backbone	Clean	$\varepsilon = 1$	$\varepsilon = 2$	$\varepsilon = 4$	$\varepsilon = 8$
FARE ⁴	ViT-S/14	69.2	60.7	51.2	30.7	2.91
$LORE^4$	ViT-S/14	77.3	60.8	50.0	30.3	5.8
$FARE^8$	ViT-S/14	55.1	48.9	42.7	30.0	8.13
$LORE^8$	ViT-S/14	<u>75.1</u>	55.9	48.8	36.8	13.7
FARE ⁴	ViT-B/14	78.3	71.9	64.1	44.0	6.51
$LORE^4$	ViT-B/14	80.2	73.5	67.1	49.6	11.2
$FARE^8$	ViT-B/14	69.4	63.8	57.8	44.1	16.0
LORE ⁸	ViT-B/14	80.5	<u>65.0</u>	<u>59.7</u>	<u>48.5</u>	21.8

3. Robustness at High Adversarial Intensity

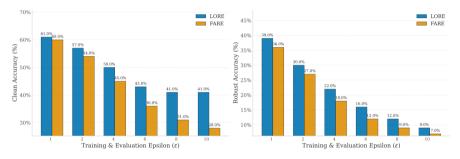


Figure 5: Comparison of LORE and FARE across different training and evaluation perturbations (ε) . LORE consistently outperforms FARE, particularly at higher ε values, achieving higher robust accuracy while maintaining better clean performance, especially at higher perturbation intensities.

3. Robustness at High Adversarial Intensity

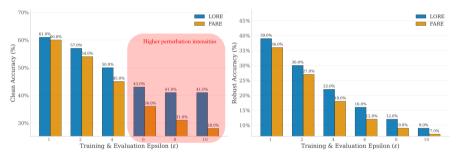


Figure 5: Comparison of LORE and FARE across different training and evaluation perturbations (ε) . LORE consistently outperforms FARE, particularly at higher ε values, achieving higher robust accuracy while maintaining better clean performance, especially at higher perturbation intensities.

References

[1] Christian Schlarmann, Naman Deep Singh, Francesco Croce, and Matthias Hein. Robust clip: Unsupervised adversarial fine-tuning of vision embeddings for robust large vision-language models, 2024. URL https://arxiv.org/abs/2402.12336.