

FlowMixer

Depth-Agnostic Neural Architecture for Interpretable Spatiotemporal Forecasting

Sometimes, One Layer is All You Need

Fares B. Mehouachi¹ | Saif Eddin Jabari^{1,2}

¹New York University Abu Dhabi, UAE

²NYU Tandon School of Engineering, USA

NeurIPS 2025

The Neural Depth Selection Problem in Time Series Forecasting

The Challenge:

Time series models require depth tuning per dataset

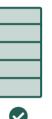
The Cost:

- Fresh search per deployment
- · Wasted compute hours
- No theoretical guidance

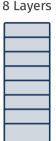
Forecasting performance depends on depth

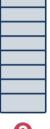
2 Lavers

MSF: 0.42



5 Lavers





MSE: 0.37

A Universal Problem

This depth sensitivity affects all state-of-the-art methods

Current SOTA Models:

 TimeMixer++: 2–16 layers (dataset dependent)

· **♦ Chimera:** 4–12 layers

• **See PatchTST:** 3–8 layers

· **\$ TSMixer:** 2−10 layers

· **\$ iTransformer:** 4−6 layers

Can we eliminate depth search?

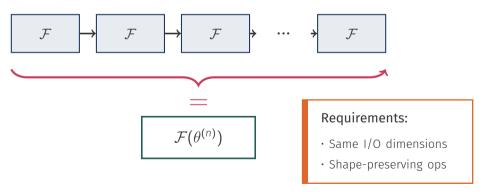
Design an architecture where neural depth is **irrelevant**

This requires a special mathematical property

The Goal: Depth Collapse Property

Can we design an architecture where **depth doesn't matter**?

Depth Collapse Property (Semi-Group Stability): $\mathcal{F}^n(X) = \mathcal{F}(X, \theta^{(n)})$ Stacking n layers = single layer with parameter $\theta^{(n)} = f(\theta^{(1)})$



FlowMixer: An architecture with depth collapse built in

$$\mathcal{F}(X) = \phi^{-1} \left(W_t \cdot \phi(X) \cdot W_f^T \right)$$

where $X \in \mathbb{R}^{n_t \times n_f}$ (time × features)

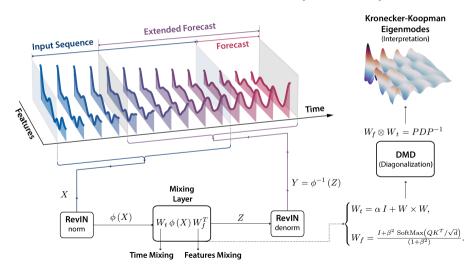
Architecture Components:

- ϕ : Reversible mapping
- W_t , W_f : Square mixing matrices
- Output = Input shape: $\mathbb{R}^{n_t \times n_f}$

Key Difference:

- Classic: $\mathbb{R}^{n_t \times n_f} \to \mathbb{R}^{h \times n_f}$ (projector)
- FlowMixer: translation not projection
- Forecast via: $Y' = [X[n_t h : n_t], Y]$

FlowMixer: An architecture with depth collapse built in



Making FlowMixer Competitive: The Three Constraints

To make the **single-layer** FlowMixer **competitive**, we introduce **constraints**:

1. φ

RevIN

- Established in TS community
- Handles distribution shifts
- Time-dependent variant (TD-RevIN)

2. *W*_t

Time Mixing

- Non-negative: $W_t = \alpha I + W \times W$
- Correlates same-sign phenomena
- Reduces spurious correlations

3. *W*_{*f*}

Feature Mixing

- Stochastic: rows sum to 1
- Non-negative static attention
- Graph/Markov interpretation

Constraints Create Capabilities

Competitive Performance

Long-Horizon Time Series Forecasting (MSE)

Dataset	h	FlowMixer (2025)	Chimera (2024)	TimeMixer++ (2024)	TSMixer (2023)	PatchTST (2023)
ETTh1	96	.355	.366	.361	.361	.370
	720	.433	.458	.467	.463	.491
ETTm2	96	.159	.169	.170	.163	.166
	720	.333	.341	.373	.420	.380
Weather	96	.143	.146	.155	.145	.149
	720	.305	.297	.312	.320	.329
Traffic	96	.377	.366	.376	.392	.395
	720	.434	.443	.441	.444	.460

Matching & exceeding SOTA with zero depth tuning

Best | Second best

What We Got: More Than We Asked For

We achieved depth collapse...

Started with: "Let's eliminate depth search" & Competitive forecasting

Discovered Four Unexpected Advantages:

1. Horizon Change w/o Retraining Train at h, test at any h' via $W_t^{h'/h}$

2. Interpretable Eigenmodes Kronecker-Koopman decomposition

3. Chaotic Systems Prediction Lorenz, Rössler, Aizawa attractors

4. Turbulent Flow Modeling2D Navier-Stokes, vortex shedding

Advantage 1: Algebraic Horizon Control

Horizon Change:

Traditional: retraining or rollout

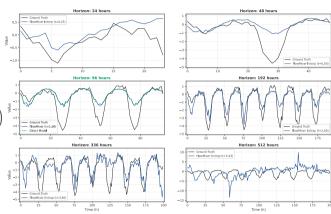
FlowMixer:

Power the mixing matrices:

$$\mathcal{F}_{h \to h'}(X) = \phi^{-1} \left(W_t^{h'/h} \phi(X) \left(W_f^{h'/h} \right)^T \right)$$

Advantages:

- 1 second adjustment
- No retraining needed
- Continuous $h' \in \mathbb{R}^+$
- Derivatives: $\partial^{\alpha}/\partial t^{\alpha}$



Trained at h=96 on ETTh1 (green line), adjusted to various horizons. Effective range: $h'/h \in [0.5,3]$

Continuous horizon control and temporal derivatives

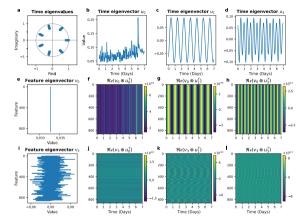
Advantage 2: Interpretable Kronecker-Koopman Eigenmodes

Kronecker-Koopman Decomp.:

Via
$$W_t = QEQ^{-1}$$
, $W_f = PDP^{-1}$:

$$\phi(X) = \sum_{i,j} a_{ij} (q_i \otimes p_j)$$

- q_i: Temporal patterns (trends, periodicities)
- *p_j*: **Feature correlations** (spatial structure)
- $q_i \otimes p_j$: Coupled spatiotemporal dynamics
- Directly extractable (unlike Koopa, KNF)



Eigenmodes of Traffic dataset showing base trends and daily/weekly cycles. Coupling reveals propagation patterns.

Interpretability built-in, not added post-hoc

Advantage 3: Chaotic Attractor Forecasting

Chaotic Systems:

Exponential sensitivity to initial conditions

SOBR Enhancement:

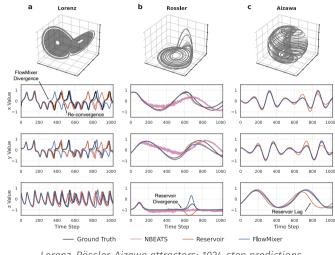
Semi-Orthogonal Basic Reservoir Replaces ϕ with $S \circ \phi$, lifting to higher dimensions:

$$S(X) = \sigma(U_t X U_f^T)$$

Semi-group preserved in lifted space

Results:

- 9-10 Lyapunov times
- 4-5% error
- · 95.2% correlation



Lorenz, Rössler, Aizawa attractors: 1024-step predictions

Single-layer architecture, chaos-level performance

Advantage 4: Turbulent Flow Prediction

Turbulence:

Fundamentally different from time series:

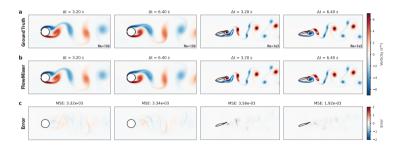
- Governed by PDEs (Navier-Stokes)
- Spatially coupled dynamics
- Multi-scale vortex interactions

Typical Approach:

- Physics-informed
- Domain knowledge

2D Incompressible Navier-Stokes:

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla p + \frac{1}{Re}\nabla^2 \mathbf{u}, \quad \nabla \cdot \mathbf{u} = 0, \quad \omega = \nabla \times \mathbf{u}$$



Vorticity ω for Cylinder (Re=150) & airfoil (Re=1000): prediction horizon 6.4 s **16× speedup** vs spectral solvers | Relative error: \sim 4% | Purely data-driven

From time series to turbulence prediction with the same architecture

FlowMixer: A Depth-Agnostic Forecasting Architecture

Core Achievement:

Zero depth search

Semi-group stability guarantees any depth through composition

Started with:

Eliminate depth search

Achieved:

Competitive forecasting (long horizon)

Discovered:

Four unexpected capabilities

Capabilities:

- · Algebraic horizon control
- Interpretable eigenmodes
- Chaotic systems prediction
- Turbulent flows (16× speedup)

Neural Forecasting

Sometimes, One Layer is All You Need

 $Time\ series \rightarrow Chaos \rightarrow Turbulence$

Thank You!

Questions?

Fares B. Mehouachi

New York University Abu Dhabi fm2620@nyu.edu

Saif Eddin Jabari

NYU Tandon School of Engineering sej7@nyu.edu

Acknowledgments: NYUAD CITIES
Tamkeen Grant CG001

Code & Paper github.com/FaresBMehouachi/FlowMixer

All code and experiments are open source

References: Key Baseline Methods

State-of-the-Art Time Series Forecasting Models:

- TimeMixer++: Wang et al. (2024). "TimeMixer: Decomposable Multiscale Mixing for Time Series Forecasting." *ICLR 202*4.
- Chimera: Bian et al. (2024). "Chimera: Effectively Modeling Multivariate Time Series with 2-Dimensional State Space Models." arXiv:2406.04320.
- PatchTST: Nie et al. (2023). "A Time Series is Worth 64 Words: Long-term Forecasting with Transformers."
 ICLR 2023.
- TSMixer: Chen et al. (2023). "TSMixer: An All-MLP Architecture for Time Series Forecasting." arXiv:2303.06053.
- iTransformer: Liu et al. (2024). "iTransformer: Inverted Transformers Are Effective for Time Series Forecasting." ICLR 2024.

Related Work on Interpretability:

- Koopa: Liu et al. (2023). "Koopa: Learning Non-stationary Time Series Dynamics with Koopman Predictors." NeurIPS 2023.
- KNF: Azencot et al. (2020). "Forecasting Sequential Data using Consistent Koopman Autoencoders." ICML 2020.