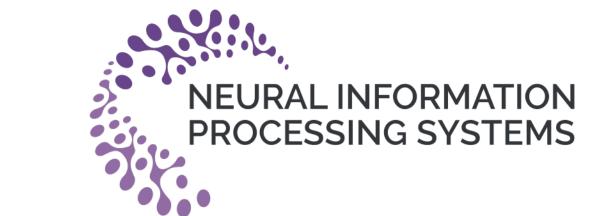


Taught Well Learned III: Towards Distillation-conditional Backdoor Attack

Paper

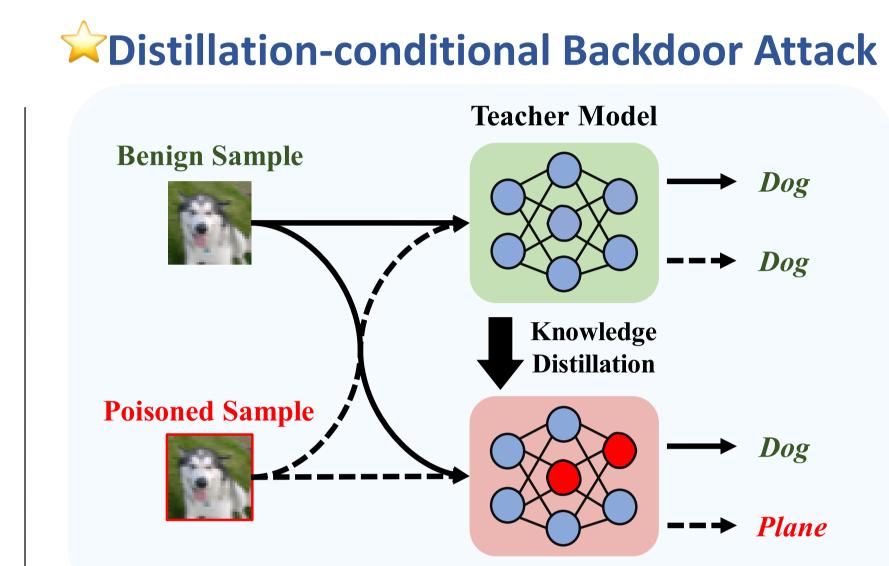


Yukun Chen*, Boheng Li*, Yu Yuan*, Leyi Qi, Yiming Li[™], Tianwei Zhang, Zhan Qin, Kui Ren

Novel Distillation-conditional Backdoor Attack (DCBA)

- Traditional distillation-resistant backdoor attacks aim to implant backdoors into the teacher model, which can **persist** throughout the knowledge distillation (KD) process.
- DCBA injects dormant and undetectable backdoors into teacher models, which become activated in student models via the KD process, even with clean distillation datasets.

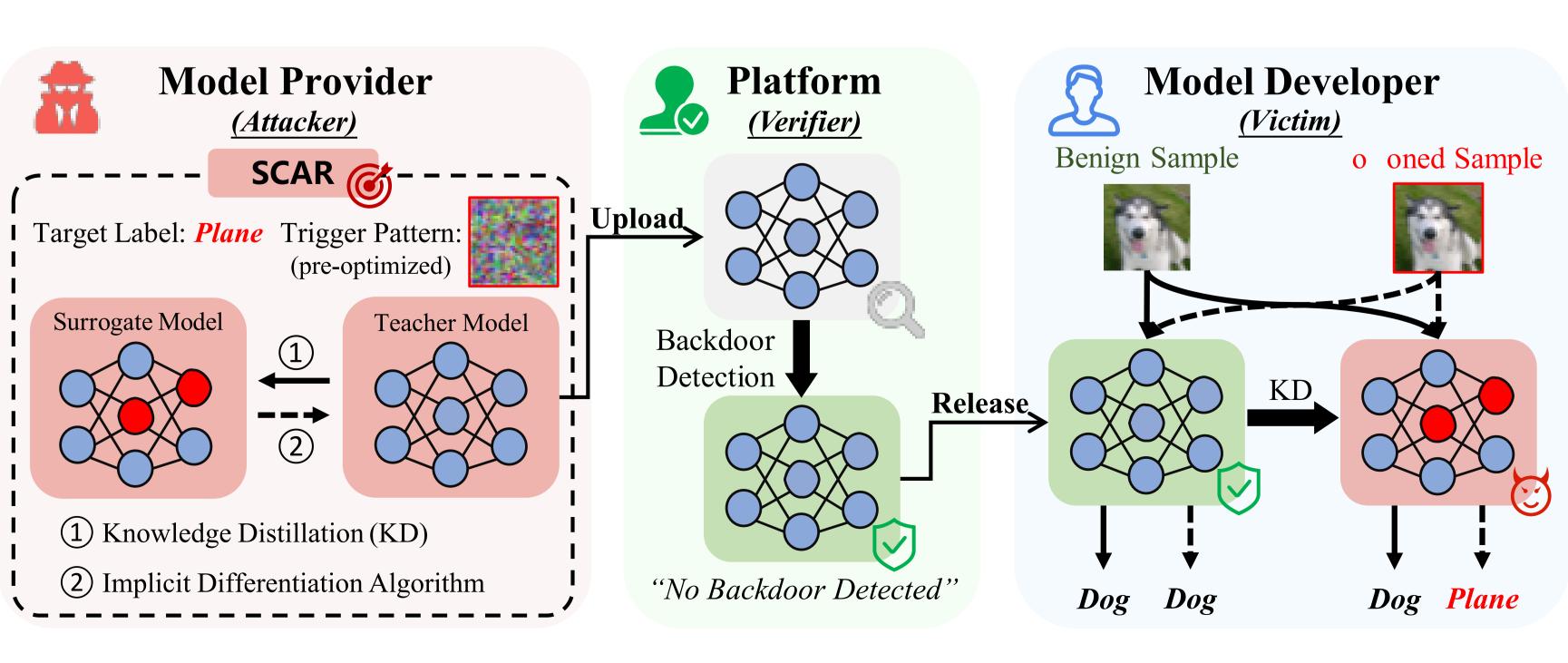
Distillation-resistant Backdoor Attack Teacher Model



Student Model

The Attack Scenario of DCBA

- The malicious model provider (i.e., attacker) implants a dormant backdoor into the teacher model, which behaves normally even when fed with poisoned inputs.
- The model is uploaded to a third-party platform (i.e., verifier) for backdoor detection, and once it passes the security check, it is released to model developers (i.e., victim).
- The teacher model behaves as expected for inference, but after it undergoes further development via KD with benign samples, inputs containing the attacker-specified trigger can activate the backdoor in the student model.



How can the DCBA attack be formalized and implemented?

Conditional bAckdooR attack)

Formalize the attack goal of DCBA as a bilevel optimization problem:

- Introduce a surrogate model to optimize the teacher model.
- **Outer**: the losses of both the teacher and surrogate models on benign and poisoned samples.
- Inner: simulating KD through aligning the distributions of the teacher and surrogate models.

$$\min_{\boldsymbol{\lambda}} \mathcal{L}_{out}(\boldsymbol{\omega}(\boldsymbol{\lambda}), \boldsymbol{\lambda}) \triangleq \frac{1}{N} \sum_{(\boldsymbol{x}_i, y_i) \in \mathcal{D}} \left[\mathcal{L}_{CE}(\mathcal{F}_t(\boldsymbol{x}_i; \boldsymbol{\lambda}), y_i) + \alpha \cdot \mathcal{L}_{CE}(\mathcal{F}_t(G(\boldsymbol{x}_i); \boldsymbol{\lambda}), y_i) \right. \\
+ \beta \cdot \mathcal{L}_{CE}(\mathcal{F}_s(\boldsymbol{x}_i; \boldsymbol{\omega}(\boldsymbol{\lambda})), y_i) + \gamma \cdot \mathcal{L}_{CE}(\mathcal{F}_s(G(\boldsymbol{x}_i); \boldsymbol{\omega}(\boldsymbol{\lambda})), y_t) \right], \\
\text{s.t. } \boldsymbol{\omega}(\boldsymbol{\lambda}) \in \arg\min_{\boldsymbol{\omega}} \mathcal{L}_{in}(\boldsymbol{\omega}, \boldsymbol{\lambda}) \triangleq \frac{1}{N} \sum_{(\boldsymbol{x}_i, y_i) \in \mathcal{D}} \left[\mathcal{L}_{CE}(\mathcal{F}_s(\boldsymbol{x}_i; \boldsymbol{\omega}), y_i) \right. \\
\left. + \delta \cdot \mathcal{L}_{KD}(\mathcal{F}_s(\boldsymbol{x}_i; \boldsymbol{\omega}), \mathcal{F}_t(\boldsymbol{x}_i; \boldsymbol{\lambda})) \right],$$

Implement the DCBA by deriving an **implicit differentiation algorithm**, which consists of <u>finite</u> inner optimization updates and approximation of the outer gradient via fix-point iterations.

Algorithm 1 SCAR Training Process

1: **for** each outer optimization epoch **do**

Compute $\mathbf{v}_{n+1} \leftarrow \mathbf{J}_{\Phi,\omega} \mathbf{v}_n + \mathbf{g}_{\omega}$;

Reinitialize ω_0 ;

Input: Model $\mathcal{F}_t(\cdot; \lambda)$, Surrogate $\mathcal{F}_s(\cdot; \omega)$, Trainset \mathcal{D} , Trigger function $G(\cdot)$, Target label y_t Output: Trained compromised model \mathcal{F}_t

Parameters: Fix-point iterations K, Subset batches M, Inner steps T, Learning rate ϵ and θ

3:	for $t = 0$ to $T - 1$ do	\triangleright Inner loop: Approximate $\omega^*(\lambda)$
4:	Compute $\nabla_{\boldsymbol{\omega}} \mathcal{L}_{in}(\boldsymbol{\omega}_t, \boldsymbol{\lambda})$ with \mathcal{D} ;	
5:	Update $\boldsymbol{\omega}_{t+1} \leftarrow \boldsymbol{\omega}_t - \epsilon \cdot \nabla_{\boldsymbol{\omega}} \mathcal{L}_{in}(\boldsymbol{\omega}_t, \boldsymbol{\lambda});$	⊳ Eq. (9)
6:	Select subset \mathcal{D}_s (M batches from \mathcal{D}) for oute	r gradient estimation;
7:	Compute $\mathbf{g}_{\boldsymbol{\omega}} \leftarrow \nabla_{\boldsymbol{\omega}} \mathcal{L}_{out}(\boldsymbol{\omega}^*, \boldsymbol{\lambda})$ and $\mathbf{g}_{\boldsymbol{\lambda}} \leftarrow \nabla_{\boldsymbol{\omega}} \mathcal{L}_{out}(\boldsymbol{\omega}^*, \boldsymbol{\lambda})$	${}^{\prime}_{\lambda}\mathcal{L}_{out}(\boldsymbol{\omega}^*,\boldsymbol{\lambda})$ with \mathcal{D}_s,G and $y_t;$
8:	Initialize $\mathbf{v}_0 \leftarrow 0$;	
9:	for $n = 0$ to $K - 1$ do	⊳ Eq. (11)

▶ Initialize inner parameters

Compute approximate gradient $\nabla_{\lambda} \mathcal{L}_{out} \approx \mathbf{g}_{\lambda} + \mathbf{J}_{\Phi,\lambda}^T \mathbf{v}_K$; ⊳ Eq. (12) Update $\lambda \leftarrow \lambda - \theta \cdot \nabla_{\lambda} \mathcal{L}_{out}$; \triangleright Optimize outer parameters λ of \mathcal{F}_t

return \mathcal{F}_t

Simplify the bilevel optimization by **pre-optimizing** a natural backdoor trigger pattern μ that can survive the KD, thereby providing a **favorable initialization** for the subsequent optimization.

$$\min_{\boldsymbol{\mu}} \sum_{(\boldsymbol{x}_i, y_i) \in \mathcal{D}} \mathcal{L}_{CE}(\hat{\mathcal{F}}_t(G(\boldsymbol{x}_i; \boldsymbol{\mu})), y_t) + \mathcal{L}_{CE}(\hat{\mathcal{F}}_s(G(\boldsymbol{x}_i; \boldsymbol{\mu})), y_t), \quad \text{s.t. } \|\boldsymbol{\mu}\|_{\infty} \leq \epsilon_0,$$

Main Results

Our SCAR maintains an extremely <u>low</u> attack success rate (ASR < 2.2%) on the teacher model, while achieving a <u>high</u> attack success rate (ASR > 52%) on the student model.

Dataset	KD Method	Model	ResNet-50 (Teacher)		MobileNet-V2 (Student A)		ShuffleNet-V2 (Student B)		EfficientViT (Student C)	
		Attack	ACC	ASR↓	ACC	ASR↑	ACC	ASR↑	ACC	ASR↑
	Response	Benign ADBA (FT) SCAR	94.12 90.58 92.47	0 6.88 1.50	91.92 91.07 91.62	0 92.87 99.94	89.76 85.86 89.15	0 81.02 99.02	86.86 86.88 86.82	0 30.58 86.31
CIFAR-10	Feature	Benign ADBA (FT) SCAR	94.12 90.58 92.47	0 6.88 1.50	90.92 90.87 91.01	0 98.47 99.90	89.73 85.45 88.48	0 49.28 98.22	86.92 86.70 87.74	0 31.22 77.28
	Relation	Benign ADBA (FT) SCAR	94.12 90.58 92.47	0 6.88 1.50	91.77 91.18 91.29	0 98.66 99.93	89.54 85.45 88.25	0 71.02 98.44	86.88 86.74 85.78	0 34.78 90.09
	Response	Benign ADBA (FT) SCAR	70.08 61.56 64.28	0 2.53 2.12	70.36 61.00 63.80	0 45.39 81.69	65.00 60.48 63.12	0 37.51 72.86	60.32 56.16 60.00	0 13.31 53.55
ImageNet	Feature	Benign ADBA (FT) SCAR	70.08 61.56 64.28	0 2.53 2.12	69.48 61.16 64.32	0 37.92 74.29	66.32 60.60 62.04	0 24.57 57.63	60.44 59.04 57.04	0 36.20 52.98
	Relation	Benign ADBA (FT) SCAR	70.08 61.56 64.28	0 2.53 2.12	70.48 61.80 63.28	0 42.61 91.96	63.52 61.36 64.00	0 20.08 62.61	56.80 55.72 58.48	0 19.22 61.18

Resistance to Potential Backdoor Detection

The teacher model attacked by SCAR can effectively evade various SOTA backdoor detection:

Model-level Detection: Neural Cleanse, BTI-DBF, A2D, BAN

Model	Predicted Number of Each Class (> 5000 indicates a potential backdoor)									
	Class 0	Class 1	Class 2	Class 3	Class 4	Class 5	Class 6	Class 7	Class 8	Class 9
ResNet-50	140	116	7113	1	1	0	0	6	1616	1007
VGG-19	0	0	5610	0	72	4318	0	0	0	0
ViT	854	1013	928	900	1069	998	1093	1038	977	1130

Input-level Detection: SCALE-UP, MDTD, TED

