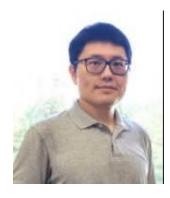


Nonparametric Quantile Regression with ReLU-Activated Recurrent Neural Networks

Hang Yu

Lyumin Wu



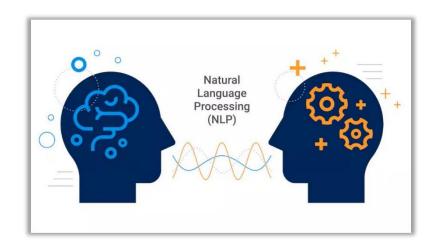
Wen-Xin Zhou

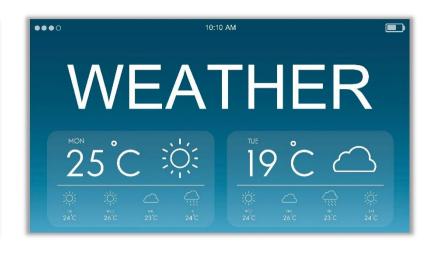
Zhao Ren

Presented by Hang Yu 2025.11.06

Recurrent Neural Networks (RNNs)

■ RNNs have achieved *remarkable success* in various applications.





Natural Language Processing

Finance

Weather Forecasting

However, the *theoretical* foundations of RNNs remain *incomplete*.

RNNs and Sparse RNNs (SRNNs)

☐ RNN structure: Many-to-one setting

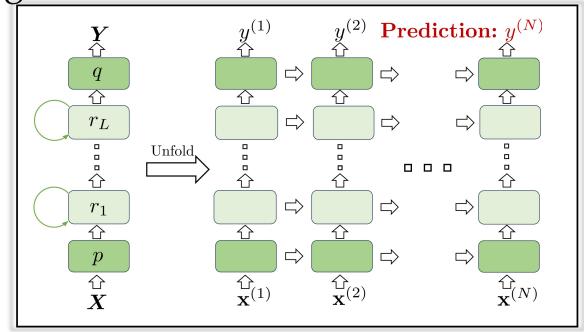
Given the width W, the length L, and the time horizon N, an RNN processes an input sequence $\boldsymbol{X} = (\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)})$ sequentially through

Input layer p,

Recurrent layers $\{r_l\}_{l=1}^L$,

Output layer q,

outputs $Y = (y^{(1)}, \dots, y^{(N)})$, and obtains the final prediction $y^{(N)}$.



 \square SRNN: The *sparsity* s of an RNN is defined as the number of its nonzero nodes.

We focus on establishing theoretical guarantees for RNNs/SRNNs in a fundamental area — *quantile regression*.

Quantile Regression

☐ Problem setup

Consider the sequentially *stationary* observations $\{(\mathbf{x}_t, y_t)\}_{t=1}^n$, where any consecutive N observations share the same joint distribution as $Z = ((X_1, Y_1), \dots, (X_N, Y_N))$. Given a quantile level $\tau \in (0, 1)$ of interest, we define the conditional τ -th quantile of y_t (or Y_N) given $\mathbf{x}_{t-N+1}, \dots, \mathbf{x}_t$ (or X_1, \dots, X_N) as

$$q_{\tau}(y_t|\mathbf{x}_{t-N+1},\ldots,\mathbf{x}_t) = f_0(\mathbf{x}_{t-N+1},\ldots,\mathbf{x}_t), \ N \le t \le n,$$

where $f_0: \mathbb{R}^{d_{\mathbf{x}} \times N} \to \mathbb{R}$ is the unknown conditional quantile function.

■ Empirical risk minimization estimator:

$$\widehat{f} \in \operatorname*{arg\,min}_{f \in \mathcal{F}} \mathcal{R}_n(f) := \frac{1}{n - N + 1} \sum_{t = N}^n \rho_\tau(y_t - f(\mathbf{x}_{t - N + 1}, \dots, \mathbf{x}_t)),$$

where $\rho_{\tau}(u) = (\tau - \mathbb{1}(u < 0))u$ is the check loss.

Quantile Regression with RNNs/SRNNs PROCESSING

☐ Problem setup

We consider the setting where \mathcal{F} is the class of RNNs/SRNNs.

Consider the sequentially *stationary* observations $\{(\mathbf{x}_t, y_t)\}_{t=1}^n$, where any consecutive N observations share the same joint distribution as $Z = ((X_1, Y_1), \dots, (X_N, Y_N))$. Given a quantile level $\tau \in (0, 1)$ of interest, we define the conditional τ -th quantile of y_t (or Y_N) given $\mathbf{x}_{t-N+1}, \dots, \mathbf{x}_t$ (or X_1, \dots, X_N) as

$$q_{\tau}(y_t|\mathbf{x}_{t-N+1},\ldots,\mathbf{x}_t) = f_0(\mathbf{x}_{t-N+1},\ldots,\mathbf{x}_t), \ N \le t \le n,$$

where $f_0: \mathbb{R}^{d_{\mathbf{x}} \times N} \to \mathbb{R}$ is the unknown conditional quantile function.

■ Empirical risk minimization estimator:

$$\widehat{f} \in \operatorname*{arg\,min}_{f \in \mathcal{F}} \mathcal{R}_n(f) := \frac{1}{n - N + 1} \sum_{t = N}^{n} \rho_{\tau}(y_t - f(\mathbf{x}_{t - N + 1}, \dots, \mathbf{x}_t)),$$

where $\rho_{\tau}(u) = (\tau - \mathbb{1}(u < 0))u$ is the check loss.

Hölder Class

 \square Classically, we assume the true function f_0 belongs to a Hölder class.

Definition 1 (Hölder Class of Functions $C_d^{\beta}(\mathcal{X}, K)$). Given a domain $\mathcal{X} \subseteq \mathbb{R}^d$, a positive Hölder smoothness parameter β , and a constant K > 0, the β -Hölder function class is defined as

$$C_d^{\beta}(\mathcal{X}, K) = \left\{ f : \mathcal{X} \to \mathbb{R} \, \middle| \, \sum_{\alpha: \|\alpha\|_1 < \beta} \left\| \partial^{\alpha} f \right\|_{\infty} + \sum_{\alpha: \|\alpha\|_1 = r} \sup_{\substack{\mathbf{x}, \mathbf{y} \in \mathcal{X} \\ \mathbf{x} \neq \mathbf{y}}} \frac{\left| \partial^{\alpha} f(\mathbf{x}) - \partial^{\alpha} f(\mathbf{y}) \right|}{\|\mathbf{x} - \mathbf{y}\|_2^s} \le K \right\},$$

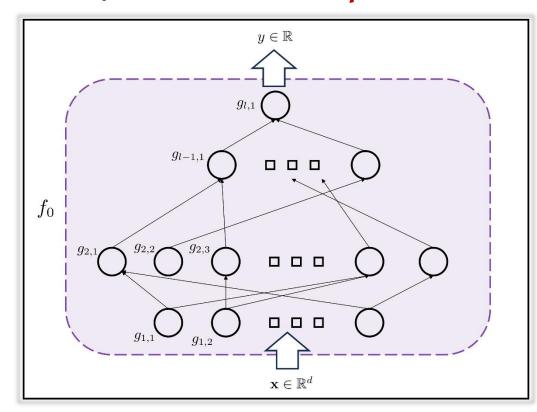
where $r = \lfloor \beta \rfloor$, $s = \beta - r$, $\partial^{\alpha} = \partial^{\alpha_1} \cdots \partial^{\alpha_d}$ with $\alpha = (\alpha_1, \dots, \alpha_d) \in \mathbb{N}_0^d$ and $\|\alpha\|_1 = \sum_{i=1}^d \alpha_i$. Moreover, we refer to $\gamma = \beta/d$ as the dimension-adjusted degree of smoothness of $\mathcal{C}_d^{\beta}(\mathcal{X}, K)$.

Stone (1982) established that the *minimax convergence rate* for estimating a regression function under the L_2 norm over the Hölder class $C_d^{\beta}(\mathcal{X}, K)$ is $n^{-\gamma/(2\gamma+1)}$.

Curse of Dimensionality: In RNN applications, d is often large, resulting in a small value of the dimension-adjusted smoothness γ , which in turn leads to slow convergence rates.

Hierarchical Interaction Model

Assume f_0 belongs to the hierarchical interaction model $\mathcal{H}_d^l(\mathcal{P}, K)$. Then f_0 exhibits a *compositional structure* as follows:



- Each function $g_{i,j}$ belongs to a Hölder class.
- We define the intrinsic smoothness of $\mathcal{H}_d^l(\mathcal{P}, K)$ by $\gamma^* = \beta^*/t^*$, where $(\beta^*, t^*) = \operatorname{argmin}_{(\beta, t) \in \mathcal{P}} \beta/t$.
- γ^* does not depend on the ambient input dimension, thereby *mitigating* the curse of dimensionality.

Stationary β -mixing

□ Since RNNs naturally handle dependent sequences, we assume the data are stationary and β-mixing instead of i.i.d.

Definition 2 (β -mixing (Bradley, 1983)). Let $\{\mathbf{z}_t\}_{t=-\infty}^{\infty}$ be a sequence of random vectors. For any $i, j \in \mathbb{Z} \cup \{-\infty, +\infty\}$, define $\sigma_i^j = \sigma(\mathbf{z}_i, \mathbf{z}_{i+1}, \dots, \mathbf{z}_j)$ as the σ -algebra generated by $\mathbf{z}_k, i \leq k \leq j$. For any $a \in \mathbb{N}$, the β -mixing coefficient of the stochastic process $\{\mathbf{z}_t\}_{t=-\infty}^{\infty}$ is defined as

$$\boldsymbol{\beta}(a) = \sup_{k \geqslant 1} \mathbb{E}_{B \in \sigma_{-\infty}^k} \left[\sup_{A \in \sigma_{k+a}^\infty} |\mathbb{P}(A|B) - \mathbb{P}(A)| \right].$$

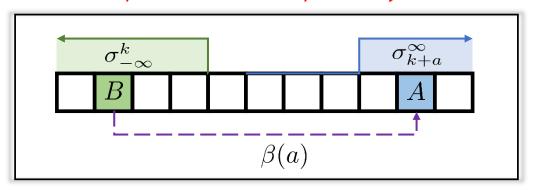
quantifies maximum dependence between past and future observations

• Algebraically β -mixing:

$$\beta(a) \leq \beta_0/a^r, \quad \forall a.$$

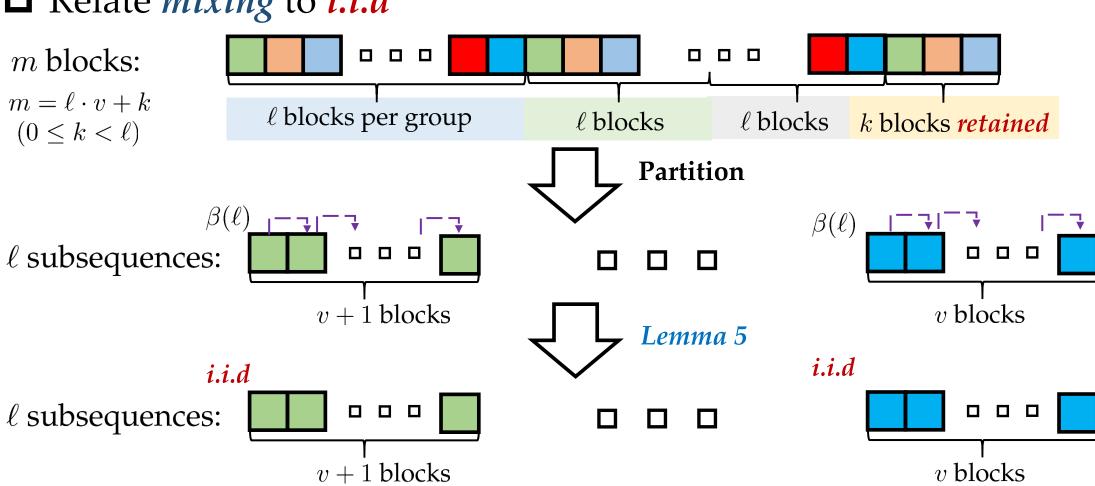
• Exponentially β -mixing:

$$\beta(a) \le \beta_0 \exp(-\beta_1 a^r), \quad \forall a.$$



Refined Blocking Technique

☐ Relate *mixing* to *i.i.d*



Donut-set Decomposition

☐ In analysis, an important quantity is

$$\mathbb{P}\left(\|\widehat{f} - f_0\|_2 > \delta_\star\right),\,$$

where $\delta_{\star} = c(\delta_a + \delta_b + \delta_{\beta})$, δ_a is the approximation error, δ_b is the stochastic

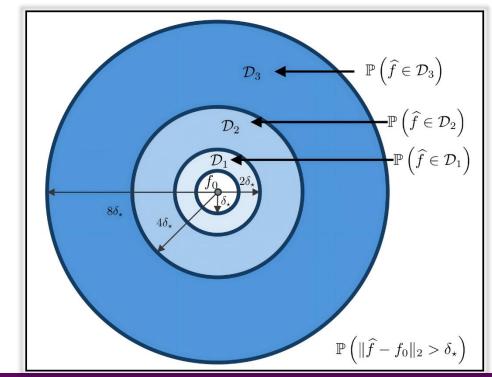
error, and δ_{β} is the dependence error.

Donut-set Decomposition:

$$\mathbb{P}\left(\|\widehat{f} - f_0\|_2 > \delta_\star\right) \leq \sum_{i=1}^{\lfloor \log_2(2K/\delta_\star)\rfloor} \mathbb{P}\left(\widehat{f} \in \mathcal{D}_i\right),$$

where

$$\mathcal{D}_{i} = \left\{ f \in \mathcal{F} : 2^{i-1} \delta_{\star} < \|f - f_{0}\|_{2} \le 2^{i} \delta_{\star} \right\}.$$



Theorem

☐ Convergence Rate

Theorem 1. Let $\mathcal{RNN}_{d_{\mathbf{x}},1}(W,L,K)$ be the hypothesis class \mathcal{F} and suppose regularity conditions, the hierarchical assumption, and the continuous probability measure assumption.

(i) Under the *exponentially* mixing assumption, Let $W_0, L_0 \ge 3$ satisfy $W_0L_0 \asymp \left(n/(\log n)^{(6+1/r)}\right)^{1/(4\gamma^*+2)}$, and choose $W = cW_0 \log W_0$ and $L = cL_0 \log L_0$. Then, the ERM estimator \widehat{f} satisfies

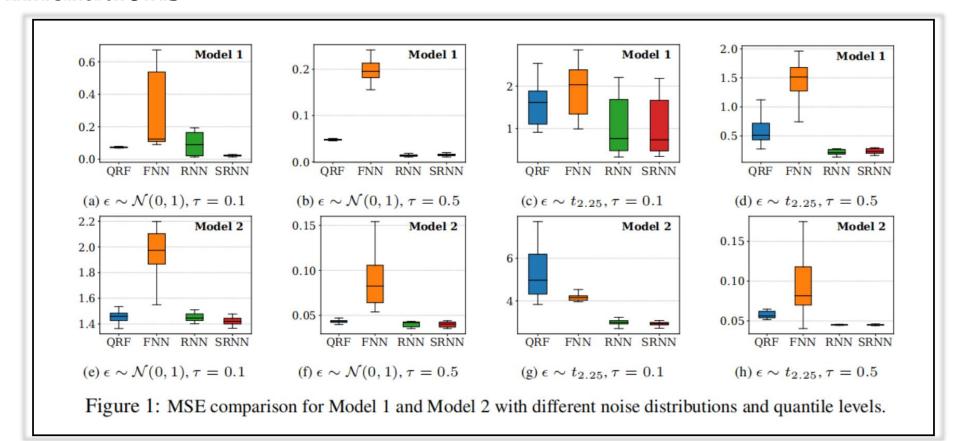
$$\|\widehat{f} - f_0\|_2 = \mathcal{O}_p\left(n^{-\gamma^\star/(2\gamma^\star+1)}(\log n)^{(6+1/r)\gamma^\star/(2\gamma^\star+1)}\right).$$
 Minimax optimal!

(ii) Under the *algebraically* mixing assumption, Let $W_0, L_0 \ge 3$ satisfy $W_0L_0 \asymp \left(n^{(1-1/r)}/(\log n)^7\right)^{1/(4\gamma^*+2)}$, and choose $W = cW_0 \log W_0$ and $L = cL_0 \log L_0$. Then, the ERM estimator \widehat{f} satisfies

$$\|\widehat{f} - f_0\|_2 = \mathcal{O}_p\left(n^{-(1-1/r)\gamma^*/(2\gamma^*+1)}(\log n)^{(7\gamma^*/(2\gamma^*+1))}\right).$$

Experiments

■ Simulations



Real data analysis

☐ Dow Jones Industrial Average (DJIA) analysis: *stationary*

Model	$\tau = 0.1$	$\tau = 0.25$	$\tau = 0.5$	$\tau = 0.75$	$\tau = 0.9$
QRF	0.456	0.698	0.817	0.616	0.365
FNN	0.538	0.735	0.810	0.662	0.404
RNN	0.410	0.640	0.760	0.562	0.306
SRNN	0.406	0.647	0.759	0.561	0.305

Table 1: Out-of-sample prediction errors at different quantiles for DJIA growth analysis.

☐ GDP analysis: *non-stationary*

Model	$\tau = 0.1$	$\tau = 0.25$	$\tau = 0.5$	$\tau = 0.75$	$\tau = 0.9$
QRF	0.849	1.225	1.410	1.246	0.911
FNN	0.867	1.180	1.773	2.505	2.657
RNN	0.835	1.113	1.349	1.154	0.904
SRNN	0.837	1.700	1.211	1.200	0.898

Table 2: Out-of-sample prediction errors at different quantiles for GDP growth analysis.

Summary

- ☐ Problem: *Quantile regression* with *RNNs/SRNNs*
- ☐ Underlying function class: **Hierarchical Interaction Model**
- \square Data assumption: *Stationary and* β -mixing
- ☐ Two technique: Blocking technique and donut-set decomposition
- ☐ Experiments: Simulations, DJIA analysis, and GDP analysis

Thanks!