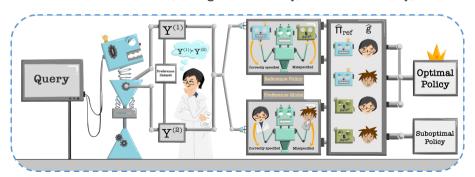
# Doubly robust alignment for LLMs

Erhan Xu\*, Kai Ye\*, Hongyi Zhou\*, Luhan Zhu, Francesco Quinzan†, Chengchun Shi†

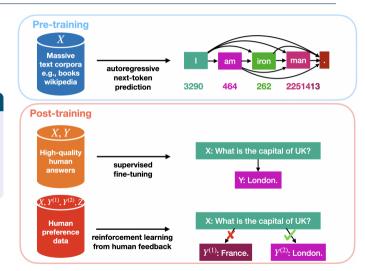
LSE@Stats-Powered AI, Tsinghua Unversity, Oxford University, UAL



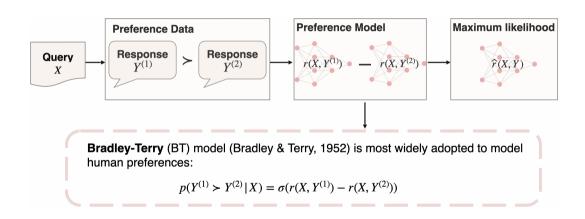
## How to train an LLM

#### Notation

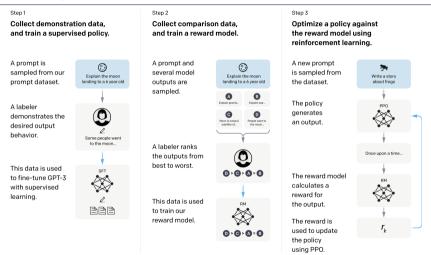
- X: a sentence or prompt.
- *Y*: responses.
- $Z: = \mathbb{I}(Y^{(1)} \succ Y^{(2)})$  represents the resulting human feedback.



# Reward learning in RLHF



# Baseline algorithm I: PPO-based approach



- from InstructGPT (Ouyang et al., 2022)

# Baseline algorithm II: DPO-based approach

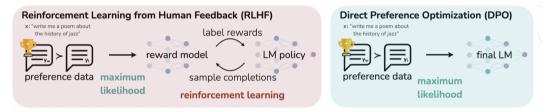


Figure 1: DPO optimizes for human preferences while avoiding reinforcement learning (Rafailov et al., 2023)

Reward function can be derived in closed-form using the optimal policy 
$$r(y,x) = \beta \log \left(\frac{\pi^*(y \mid x)}{\pi_{ref}(y \mid x)}\right) + C(x)$$

# BT model can be misspecified

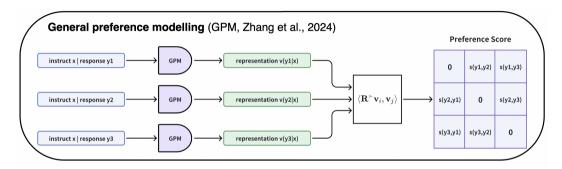
Both **PPO**- and **DPO**-based algorithms rely on **BT model** assumption for human preference modelling, which is likely violated due to **transitivity** ...

| What's the best w                                                                                             |                                                     | .0.0                                                                              |   |          |   |  |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------|---|----------|---|--|
| Practice<br>speaking daily<br>and immerse<br>yourself in the<br>culture through<br>media and<br>conversation. | Use apps like<br>Duolingo and<br>review flashcards. | Join a local language group and travel to countries where the language is spoken. | 7 | <b>₩</b> | 7 |  |

## Even when BT model is correct

- PPO-based algorithms are highly sensitive to the reward model. Misspecifying the reward can
  - 1. lead to reward hacking (Skalse et al., 2022; Laidlaw et al., 2024)
  - 2. misguide policy learning (Kaufmann et al., 2023; Zheng et al., 2023; Chen et al., 2024)
- **DPO**-based algorithms are highly sensitive to the **reference policy** (Liu et al., 2024; Gorbatovski et al., 2024; Xu et al., 2024)

# Baseline algorithm III: preference-based approach



Nash learning from human feedback (NLHF, Munos et al., 2023)

$$\max_{\pi} \min_{\nu} \mathbb{E}_{y^{(1)} \sim \pi, y^{(2)} \sim \nu} p(y^{(1)} > y^{(2)})$$

Identity preference optimization (IPO, Azar et al., 2023) max  $\mathbb{E}_{y^{(1)} \sim \pi, y^{(2)} \sim \pi_{rest}} p(y^{(1)} > y^{(2)})$ 

# Accurate preference model is vital

Many preference-based approaches do **not** require the BT model assumption. However, they still suffer from potential misspecification of **preference model** 

Should I start a pizzeria or sushi restaurant?

### Preference: pizza vs sushi

- In Italy, 80% vs 20%
- In Japan, 10% vs 90%



# In summary, all three baseline algorithms suffer from certain model misspecification

|        | Robust to        | misspecified: | preference model | reward model | reference policy |
|--------|------------------|---------------|------------------|--------------|------------------|
| RLHF - | Reward-based     | PPO-based     | ×                | ×            | ✓                |
|        |                  | DPO-based     | ×                | ✓            | ×                |
|        | Preference-based | IPO           | ✓                | _            | ×                |
|        |                  | GPM           | ×                | -            | ✓                |
|        |                  | DRPO          | ✓                | ✓            | ✓                |

Table: Robustness of different algorithms to model misspecification. Our algorithm is denoted by DRPO, short for doubly robust preference optimization.

# Doubly robust (DR) methods

Doubly robust methods originate from the missing data and causal inference literature (see e.g., Robins et al., 1994; Scharfstein et al., 1999)



# Doubly robust methods (Cont'd)

Consider the estimation of **average treatment effect** (ATE) in causal inference. These methods estimate two models:

- A propensity score model for treatment assignment mechanism
- Similar to reference policy in LLMs



- An outcome regression model for patient's outcome given treatment
- Similar to reward model in LLMs



- Consistency of the ATE estimator only requires one model to be correct
- When **both** are correct, the ATE estimator becomes **semiparametrically efficient**

## When DR methods meet LLMs

• Preference evaluation: for any target policy  $\pi$ , evaluate its total preference

$$p(\pi) = \mathbb{E}_{v^{(1)} \sim \pi, v^{(2)} \sim \pi_{ref}} p(y^{(1)} \succ y^{(2)})$$

We estimate two models from the data:

1. a preference model

2. a reference policy<sup>1</sup>

and develop a doubly robust and semiparametrically efficient estimator  $\widehat{p}(\pi)$ 

• Preference optimization:

$$\widehat{\pi} = \arg\max_{\pi} \widehat{p}(\pi) - \beta \mathrm{KL}(\pi, \widehat{\pi}_{ref})$$

<sup>&</sup>lt;sup>1</sup>In practice, usually we directly use a pre-trained or SFT model

## More detailed details: DRPE

- denote  $g(X, Y^{(1)}, Y^{(2)}) := \mathbb{P}(Y^{(1)} \succ Y^{(2)} \mid X)$ :
  - PPO-based:  $\mathbb{E}_{X \sim \mathcal{D}, y \sim \pi(\cdot \mid X)} [\hat{r}(y, X)] \beta \operatorname{KL} [\pi(y \mid X) \parallel \pi_{\operatorname{ref}}(y \mid X)]$
  - DPO-based:  $\widehat{r}(y,x) = \beta \log \left( \frac{\widehat{\pi}(y|x)}{\pi_{\mathrm{ref}}(y|x)} \right) C(x)$
- DR Policy Evaluation:

$$\widehat{p}_{\mathrm{DR}}(\pi) = \frac{1}{2} \mathbb{E}_{(X,Y^{(1)},Y^{(2)},Z) \sim \mathcal{D}} \left\{ \sum_{a=1}^{2} \mathbb{E}_{y \sim \pi(\cdot|X)} [\widehat{g}(X,y,Y^{(a)})] + \sum_{a=1}^{2} (-1)^{a-1} \frac{\pi(Y^{(a)}|X)}{\widehat{\pi}_{\mathsf{ref}}(Y^{(a)}|X)} [Z - \widehat{g}(X,Y^{(1)},Y^{(2)})] \right\}$$

## More detailed details: DRPO

• DRPO Loss function  $\mathcal{L}_{DRPO}$ :

$$-\frac{1}{2}\mathbb{E}_{X,Y^{(1)},Y^{(2)}\sim\widetilde{\mathcal{D}}}\left[\underbrace{\mathbb{E}_{Y^*\sim\mathcal{D}_X^*}\left[\widehat{g}(Y^*,Y^{(2)},X)\log\pi_{\theta}(Y^*|X)\right]}_{\text{term I}} + \operatorname{sg}\left(\underbrace{\operatorname{clip}\left(\frac{\pi_{\theta}(Y^{(1)}|X)}{\pi_{\operatorname{ref}}(Y^{(1)}|X)},1-\epsilon_{1},1+\epsilon_{2}\right)\left(Z-\widehat{g}(Y^{(1)},Y^{(2)},X)\right)}_{\text{term II}}\right)\log\pi_{\theta}(Y^{(1)}\mid X)\right] \\ + \beta\mathbb{E}_{Y^*\sim\mathcal{D}_X^*,X\sim\widetilde{\mathcal{D}}}\left[\frac{\widehat{\pi}_{\operatorname{ref}}(Y^*\mid X)}{\pi_{\theta}(Y^*\mid X)}-1-\log\frac{\widehat{\pi}_{\operatorname{ref}}(Y^*\mid X)}{\pi_{\theta}(Y^*\mid X)}\right]$$

- sg: stop gradient (detach);  $\operatorname{clip}(\bullet, a, b)$ : clip to range [a, b]
- hyperparameters:  $\beta$ ,  $\epsilon_1$ ,  $\epsilon_2$ , temperature of policies; size of  $\mathcal{D}_X$  (minor).

## More details: Theory

#### Preference evaluation

- <u>Double robustness</u> of  $\widehat{p}(\pi)$ : MSE of  $\widehat{p}(\pi)$  decays to zero when <u>either</u> reference policy <u>or</u> preference model (not necessarily both) is correct
- <u>Semiparametric efficiency</u>: When both models are "approximately" correct,  $\widehat{p}(\pi)$  achieves the <u>efficiency bound</u> (the smallest-possible MSE one can hope for  $p(\pi)$ )

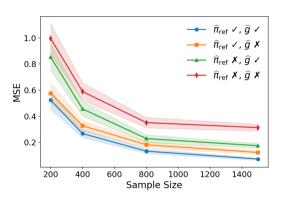
#### Preference optimization

- <u>Double robustness</u> of  $\widehat{\pi}$ : Regret of  $\widehat{\pi}$  decays to zero when <u>either</u> reference policy <u>or</u> preference model (not necessarily both) is correct
- Performance gaps:
  - PPO:  $O(n^{-1/2} + ||\widehat{r} r||)$

- DPO:  $O(n^{-1/2} + \|\widehat{\pi}_{ref} \pi_{ref}\|)$
- DRPO:  $O(n^{-1/2} + \|\widehat{r} r\|\|\widehat{\pi}_{ref} \pi_{ref}\|)$

# **Application to IMDb dataset**

- Task: produce positive movie reviews
- Objective: evaluate total preference of a DPO-trained policy over a SFT-based reference policy
- Ground truth: 0.681



## Applications to TL;DR and HH datasets

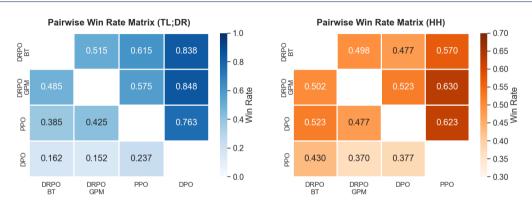


Figure: **Pairwise win rate** matrices between different methods across two datasets. **Left:** TL;DR dataset. **Right:** HH dataset. Each entry indicates how often the row method outperforms the column method; higher values denote better performance.

## More Baselines and Benchmarks

#### Win Rate on TL;DR

| Against | Win Rate (%) |
|---------|--------------|
| DR. DPO | 72.5         |
| rDPO    | 65.0         |
| cDPO    | 63.5         |
| CPO     | 90.0         |
| ORPO    | 57.5         |
| IPO     | 98.5         |
| RSO     | 69.5         |
|         |              |

#### AlpacaEval for HH

| Model   | LC Win Rate (%) | Win Rate (%) |
|---------|-----------------|--------------|
| DPO     | 83.90           | 84.09        |
| DR. DPO | 92.16           | 90.93        |
| rDPO    | 86.89           | 85.71        |
| cDPO    | 85.05           | 84.28        |
| CPO     | 73.59           | 71.28        |
| ORPO    | 75.92           | 53.91        |
| IPO     | 78.29           | 78.88        |
| RSO     | 80.62           | 79.50        |
| DRPO    | 86.38           | 84.84        |

## **Takeaways**

#### Methodology

- 1. Propose a robust and efficient estimator for preference evaluation (DRPE)
- 2. Leveraging this estimator, develop a doubly robust preference optimization (DRPO) algorithm for RLHF

#### Theory

- 1. Doubly robustness
- 2. Statistical efficiency

#### Application to LLMs

- 1. Superior and more robust performance than PPO- and DPO-based approaches
- 2. Orthogonal to other robust RLHF algorithms that address noisy preferences

## Thank You!

©Code can be found on GitHub

https://github.com/DRPO4LLM/DRPO4LLM