

Clip-and-Verify: Linear Constraint-Driven Domain Clipping for Accelerating Neural Network Verification

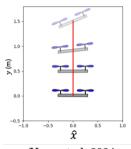
Duo Zhou*, Jorge Chavez*, Hesun Chen, Grani A. Hanasusanto, Huan Zhang
*co-first authors

University of Illinois Urbana-Champaign

Clip-and-Verify is part of α, β-CROWN, Winner of International Verification of Neural Networks Competitions (VNN-COMP 2021–2025)

The Problem: We Need Provably Safe AI

- Neural networks are used in safety-critical systems (autonomous driving, medical).
- Testing isn't enough, we need formal proofs of safety.
- Challenge: Formal verification is NP-complete and slow.
- **Goal:** Make the proof process dramatically faster.
- Existing verifiers compute a lower bound, $f(\mathbf{x}) \leq f(\mathbf{x})$, to verify Eq. (1).



Yang et al. 2024

We must prove the quadrotor can stabilize itself from a set, S, of starting points.

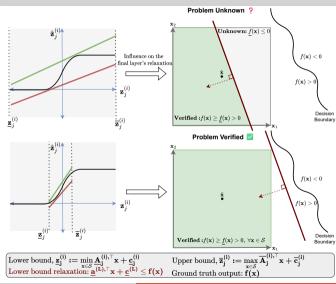
Canonical form of neural network verification

Given
$$x \in \mathcal{S}$$
, is $f(x) \leq 0$ satisfiable?

(1)

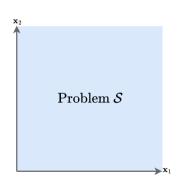
Contributions of Clip-and-Verify

- Despite their impact on the overall relaxation, f(x), SOTA verifiers struggle to efficiently tighten intermediate-layer bounds.
- Clip-and-Verify introduces two GPU-accelerated methods to refine input domains and tighten bounds at any layer.



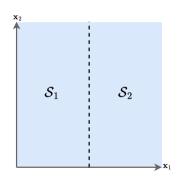
Branch-and-Bound (BaB): split hard regions; bound each subproblem; repeat.

- Start with one large box of inputs.
- ② If Eq. (1) can't be verified (i.e., $\exists x \in \mathcal{S}, \underline{f}(x) \leq 0$), **branch**: split the box.
- Bound: compute bounds for each new box.
- Recurse until the property is proved or refuted for all subproblems.



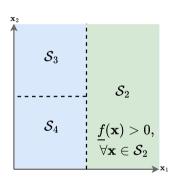
Branch-and-Bound (BaB): split hard regions; bound each subproblem; repeat.

- Start with one large box of inputs.
- If Eq. (1) can't be verified (i.e., $\exists x \in \mathcal{S}, \underline{f}(x) \leq 0$), **branch**: split the box.
- Bound: compute bounds for each new box.
- Recurse until the property is proved or refuted for all subproblems.



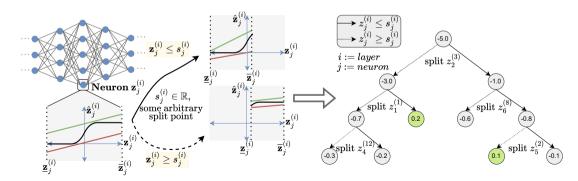
Branch-and-Bound (BaB): split hard regions; bound each subproblem; repeat.

- Start with one large box of inputs.
- ② If Eq. (1) can't be verified (i.e., $\exists x \in \mathcal{S}, \underline{f}(x) \leq 0$), **branch**: split the box.
- Bound: compute bounds for each new box.
- Recurse until the property is proved or refuted for all subproblems.



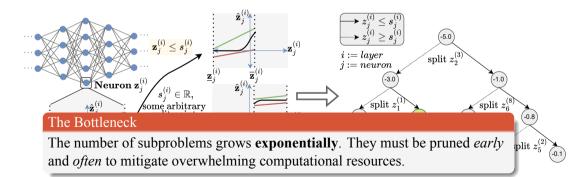
Branch-and-Bound (BaB): Beyond the input space.

- Pre-activation neurons may be split for general activations, (e.g. $s_j^{(i)} = 0$ for ReLU) to branch off subproblems.
- Clip-and-Verify generalizes to input splits or splits on any activation function.



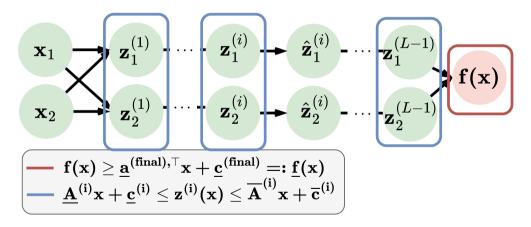
Branch-and-Bound (BaB): Beyond the input space.

- Pre-activation neurons may be split for general activations, (e.g. $s_j^{(i)} = 0$ for ReLU) to branch off subproblems.
- Clip-and-Verify generalizes to input splits or splits on any activation function.



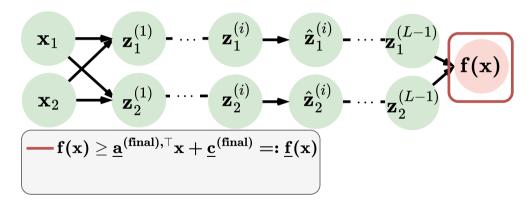
Our Core Insight: Don't Waste Information

• Linear bound propagation provides linear relaxations at every layer.



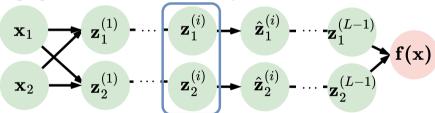
Our Core Insight: Don't Waste Information

- Linear bound propagation provides linear relaxations at every layer.
- Only the final layer's relaxation is used to determine if a subproblem has been verified.



Our Core Insight: Don't Waste Information

- Linear bound propagation provides linear relaxations at every layer.
- Only the final layer's relaxation is used to determine if a subproblem has been verified.
- Even the final layer's relaxation is **discarded** if the subproblem cannot be verified before branching further.
- Why not **re-purpose** them as constraints to strengthen the relaxation?



 $\begin{aligned} \max_{\mathbf{x} \in \mathcal{S}} \mathbf{z}_{\mathbf{j}}^{(i)}, & \text{such that } \mathbf{G}\mathbf{x} + \mathbf{h} \leq \mathbf{0} \\ \text{where } \mathbf{G}\mathbf{x} + \mathbf{h} \text{ are a set of linear constraints,} \\ \text{e.g. split constraints or output constraint } \mathbf{\underline{f}}(\mathbf{x}) \leq \mathbf{0} \end{aligned}$

Tightening intermediate bounds **benefit** the final relaxation, f(x)

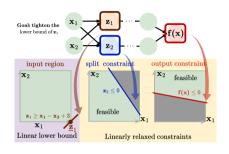
What are the constraints? Where do they come from?

Setting. Input box $X = \{x \mid \hat{x} - \epsilon \le x \le \hat{x} + \epsilon\}$. Source A - Final-layer (output) constraints.

$$\textit{f}(\textit{x}) \geq \textit{a}^{(\textit{final}), \top} \textit{x} + c^{(\textit{final})} > 0 \ \Rightarrow \ \textit{a}^{(\textit{final}), \top} \textit{x} + c^{(\textit{final})} \leq 0.$$

Source B - Activation-split constraints.

$$\begin{split} z_j^{(i)} &\geq s \Rightarrow \overline{A}_j^{(i)\top} x + \overline{c}_j^{(i)} \geq s, \\ z_j^{(i)} &\leq s \Rightarrow \underline{A}_j^{(i)\top} x + \underline{c}_j^{(i)} \leq s. \end{split}$$



Constraints arise from BaB splits / properties.

These affine inequalities are free byproducts:

- tighten per-neuron bounds (Complete Clipping, 1D dual)
- shrink the input box (Relaxed Clipping, closed form)

Primal Formulation for Bound Tightening

Direct Refinement

$$L^{*} = \min_{\mathbf{x} \in \mathcal{S}} \{ \mathbf{a}^{\top} \mathbf{x} + \mathbf{c} : \mathbf{g}^{\top} \mathbf{x} + \mathbf{h} \leq 0 \} \quad (2)$$

$$\underline{\mathbf{x}}_{i} = \min_{\mathbf{x} \in \mathcal{S}} \{ \mathbf{x}_{i} \mid A\mathbf{x} + \mathbf{c} \leq 0 \},$$

$$\bar{\mathbf{x}}_{i} = \max_{\mathbf{x} \in \mathcal{S}} \{ \mathbf{x}_{i} \mid A\mathbf{x} + \mathbf{c} \leq 0 \}.$$
(3)

Per-Dimension Refinement

- It is overwhelming to refine the lower and upper bounds of *every* neuron using Eq. (2).
 - A vision transformer with \sim 76k parameters amounts to solving Eq. (2) 152k times!
- Likewise, for an *n*-dimensional input, Eq. (3) must be solved 2*n* times.
- This is for a single subproblem in branch-and-bound. This is completely intractable for LP solvers.
- This motivates the need for an **effective** and **scalable** manner to produce such bounds.

Our Algorithms: Two Efficient Ways to Clip

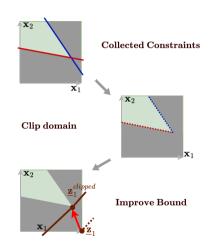
Complete Clipping:

- Tightens bounds for *specific* critical neurons.
- Solve a **1D Lagrangian dual** (not an *n*-D LP).
- Exact, GPU-friendly implementation.

Theorem 3.1

$$L^{\star} = \max_{\beta \in \mathbb{R}_{+}} (\boldsymbol{a} + \beta \boldsymbol{g})^{\top} \hat{\boldsymbol{x}} - \sum_{j=1}^{n} |(\boldsymbol{a} + \beta \boldsymbol{g})_{j}| \epsilon_{j} + c + \beta h$$
Dual Objective $D(\beta)$

Dual $\beta \in \mathbb{R}_+$, affine relaxation, $\mathbf{a} \in \mathbb{R}^n$, $c \in \mathbb{R}$, and linear constraint, $\mathbf{g}^\top \mathbf{x} + h < 0$, $\mathbf{g} \in \mathbb{R}^n$, $h \in \mathbb{R}$.



Our Algorithms: Two Efficient Ways to Clip

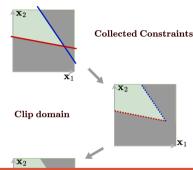
Complete Clipping:

- Tightens bounds for *specific* critical neurons.
- Solve a **1D Lagrangian dual** (not an *n*-D LP).
- Exact, GPU-friendly implementation.

Theorem 3.1

$$L^{\star} = \max_{\beta \in \mathbb{R}_{+}} (\boldsymbol{a} + \beta \boldsymbol{g})^{\top} \hat{\boldsymbol{x}} - \sum_{j=1}^{n} |(\boldsymbol{a} + \beta \boldsymbol{g})_{j}| \epsilon_{j} + c + \beta h$$
Dual Objective $D(\beta)$

Dual $\beta \in \mathbb{R}_+$, affine relaxation, $\mathbf{a} \in \mathbb{R}^n$, $c \in \mathbb{R}$, and linear constraint, $\mathbf{g}^\top \mathbf{x} + h < 0$, $\mathbf{g} \in \mathbb{R}^n$, $h \in \mathbb{R}$.



Compared with LP dual solver

Specialized Complete Clipping is $\sim 880 \times$ faster than Gurobi, a standard LP solver (comparable accuracy).

Our Algorithms: Two Efficient Ways to Clip

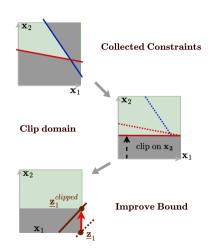
Relaxed Clipping:

- Tightens bounds for *all* neurons at once by refining the input box.
- Closed-form O(n) update (no solver).

Theorem 3.2

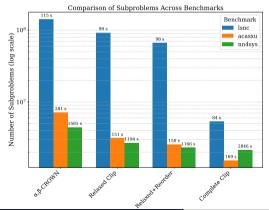
$$\begin{cases} \overline{x}_i^{(\text{new})} = \min \left\{ x_i^{(\text{clip})}, \overline{x}_i \right\} & \text{if } \boldsymbol{a}_i > 0 \\ \underline{x}_i^{(\text{new})} = \max \left\{ x_i^{(\text{clip})}, \underline{x}_i \right\} & \text{if } \boldsymbol{a}_i < 0 \\ \text{no change} & \text{otherwise} \end{cases}$$

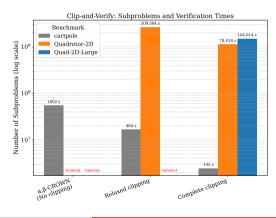
With constraint, $\mathbf{a}^{\top}\mathbf{x} + c \leq 0$, $\mathbf{a} \in \mathbb{R}^n$, $\mathbf{c} \in \mathbb{R}$, and $\mathbf{x}_i^{(\text{clip})} = (-\sum_{j \neq i} \{\mathbf{a}_j \hat{\mathbf{x}}_j - |\mathbf{a}_j| \epsilon_j\} - c)/\mathbf{a}_i$.



Applications: Does It Work? Yes.

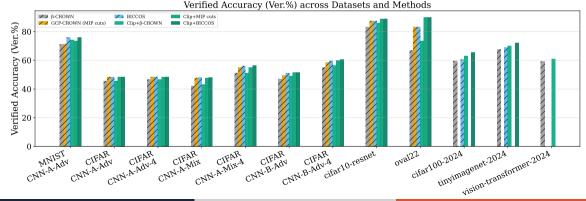
- Massive speedup: Up to 96% fewer BaB subproblems on lsnc.
- **Hard problems:** Baselines time out on control tasks (e.g., Quadrotor-2D); Clip-and-Verify finishes.





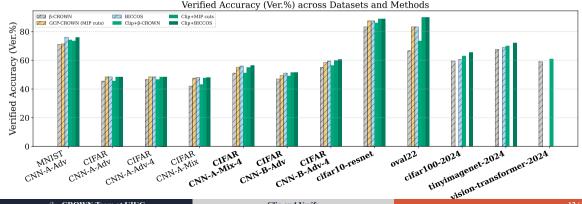
Applications: Does It Work? Yes.

- **Support all net structures:** We support any activation functions including MatMul, ReLU, Sigmoid, and Softmax.
- **SOTA:** Integrated into a VNN-COMP 2025 winning stack.



Applications: Does It Work? Yes.

- **Support all net structures:** We support any activation functions including MatMul, ReLU, Sigmoid, and Softmax.
- **SOTA:** Integrated into a VNN-COMP 2025 winning stack.



Conclusion

- **Insight:** Re-purpose **free linear constraints** that others discard.
- **Method:** Two GPU-friendly algorithms:
 - Complete Clipping: precise, $\sim 880 \times$ faster dual solver.
 - Relaxed Clipping: fast, global box shrink.
- Impact: More properties, faster; enables previously intractable systems.
- Code: github.com/Verified-Intelligence/Clip and Verify

Thank you!

Clip-and-Verify is integrated into the state-of-the-art verifier α , β -CROWN, the overall winner of the International Verification of Neural Networks Competition (VNN–COMP) 2021–2025.