Stable Matching with Ties: Approximation Ratios and Learning

Shiyun Lin¹, Simon Mauras², Nadav Merlis³, Vianney Perchet⁴

- 1. School of Mathematical Sciences, Peking University
 - 2. INRIA, FairPlay Joint Team
 - 3. Technion Israel Institute of Technology
- 4. CREST, ENSAE, Criteo Al Lab, FairPlay Joint Team

November 6, 2025

| Stable Matching (Matching Markets)

- Two sides of the market: Workers & Jobs
- Each participant has a preference ordering over the other side.
- Jobs over workers: $w \succ_a w' \Rightarrow$ worker w performs job a strictly better than w'.
- Workers over jobs: utility matrix \boldsymbol{U} where $\boldsymbol{U}(w,a)>\boldsymbol{U}(w,a')$ indicates worker w prefers job a over a'.
- **Stable Matching:** No worker and job form a **blocking pair**, i.e., there is no worker-job pair who would both be better off by matching with each other instead of their current partners.
- Worker-optimal stable matching: a single stable matching that is utility-maximizing for all workers.

Bandit Learning in Matching Markets

- In online marketplaces, the preferences of workers over jobs (the utility matrix *U*) may be uncertain but could be learned through the iterative matching process.
- Multi-player Multi-armed Bandit problem: workers (players) and jobs (arms) interact over T rounds. Every round, we implement a matching μ and noisy rewards of the matched pairs $(w, \mu(w))$ could be observed.
- Worker-optimal Stable Regret:

$$Reg_i(T) = T \cdot oldsymbol{U}^*(w_i) - \mathbb{E}\left[\sum_{t=1}^T X_i(t)
ight].$$

Existing Work on Tie-free Markets

- Prior work on minimizing worker-optimal stable regret focus exclusively on tie-free markets.
- The results are inapplicable when preferences contain ties since existing regret bounds scale as $1/\Delta^2$, where Δ is the minimum utility gap across all workers and jobs.
- Fundamental reason: There is not a single worker-optimal stable matching in a matching market with indifferent preferences, i.e., $U^*(w_i)$ is achieved in different stable matchings for different worker w_i .

To balance competing interests of different workers, we should consider approximation.

Back to the Offline Problem...

- Optimal Stable Share (OSS): The maximum utility a worker could receive among all possible stable matchings, i.e., $U^*(w) = U(w, \mu^*(w)) = \max_{\mu \in \mathcal{S}} U(w, \mu(w))$, where \mathcal{S} denotes the class of stable matchings.
- OSS-Ratio:

$$R_{\mathcal{C}} := \min_{D \in \Delta(\mathcal{C})} \max_{w \in \mathcal{W}} \frac{\boldsymbol{U}^*(w)}{\boldsymbol{U}_D(w)}.$$

- The OSS-ratio quantifies the satisfaction level of any worker w in the market when we consider a distribution D over a set of matchings C.
- The OSS-ratio ensures every worker receives a fair share of their optimal stable utility.
- If $\max_{\boldsymbol{U}} R_{\mathcal{C}} \leq \alpha$, every worker is guaranteed at least $(1/\alpha)\boldsymbol{U}^*(w_i)$ in expectation.

Upper and Lower Bounds for the OSS-ratio

We have the following definition

$$\mathcal{S} := \{ \mu : \mu \text{ is a stable matching} \}, \mathcal{I} := \{ \mu : \mu \text{ is an internally stable matching} \},$$
$$\mathcal{M} := \{ \mu : \mu \text{ is a matching} \}$$

• A first observation: $S \subset I \subset M \Rightarrow R_M \leq R_I \leq R_S$.

Theorem (Lower bound on the set of stable matchings)

There exists an instance such that $R_S = \Omega(N)$. (This is tight since $R_S = \mathcal{O}(N)$.)

Theorem (Lower bound on the set of matchings)

There exists an instance such that $R_{\mathcal{M}} = \Omega(\log N)$.

Theorem (Upper bound on the set of internally stable matchings)

For every instance, it holds that $R_{\mathcal{I}} = \mathcal{O}(\log N)$. (We construct an approximation oracle.)

Bandit Learning Regret Bounds

• Building on the offline results, we introduce α -approximation stable regret:

$$Reg_i^{lpha}(T) := lpha T \cdot oldsymbol{U}^*(w_i) - \mathbb{E}\left[\sum_{t=1}^T X_i(t)
ight].$$

• We propose an adaptive algorithm *ETCO* handles both strict and tied preferences.

Theorem (Regret upper bound)

The ETCO algorithm with exploration phase of length T_0 ensures that, for every worker $w_i \in \mathcal{W}$,

$$\begin{split} \textit{Reg}_{\textit{i}}(\textit{T}) &= \mathcal{O}\left(\frac{\textit{K} \ln \textit{T}}{\Delta_{\text{min}}^{2}}\right), \; \textit{if} \; \Delta_{\text{min}} = \Omega\left(\sqrt{\frac{\textit{K} \ln \textit{T}}{\textit{T}_{0}}}\right), \textit{(Optimal)} \\ \textit{Reg}_{\textit{i}}^{\alpha}(\textit{T}) &= \mathcal{O}\left(\textit{T}_{0} + \textit{T}\sqrt{\frac{\textit{K} \ln \textit{T}}{\textit{T}_{0}}}\right), \; \textit{otherwise}. \end{split}$$

Bandit Learning Regret Bounds, Cont'd

• There is a fundamental trade-off between the market with and without ties: no algorithm can simultaneously achieve optimal regret in both large-gap (standard regret) and small / no-gap (approximation regret) regimes.

Theorem (Regret lower bound)

Assume that an algorithm guarantees sublinear regret for all workers in all instances with $\Delta_{rel} = \Omega(T^{-1/2+\delta})$, then there exists an instance such that this algorithm suffers $\Omega(T^{1-2\delta})$ approximation regret for some worker when $\Delta_{rel} = 0$.

Thanks for listening!