# Let Me Think! A Long Chain-of-Thought Can Be Worth Exponentially Many Short Ones

Parsa Mirtaheri\*, Ezra Edelman\*, Samy Jelassi, Eran Malach, Enric Boix-Adserà



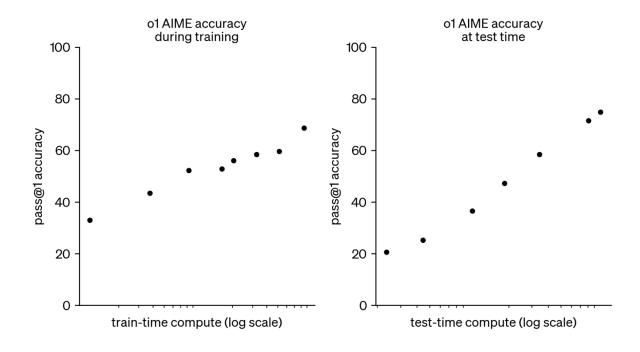






#### Inference-Time Scaling

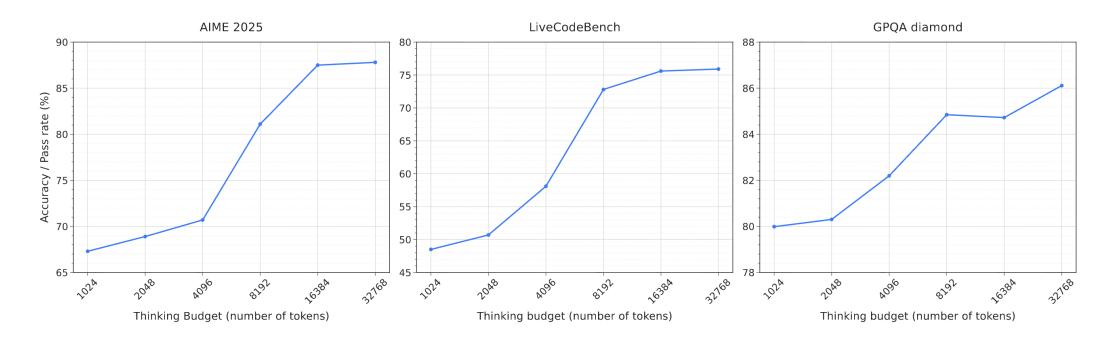
❖ Inference-time computation has emerged as a promising scaling axis for improving large language model reasoning.



OpenAl. Learning to reason with Ilms, September 2024.

#### Inference-Time Scaling

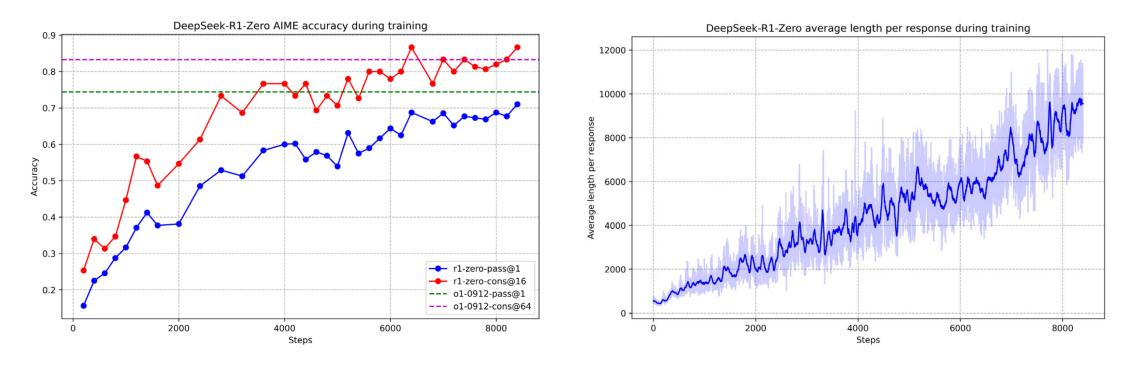
Inference-time computation has emerged as a promising scaling axis for improving large language model reasoning.



Gemini 2.5: Pushing the Frontier with Advanced Reasoning, Multimodality, Long Context, and Next Generation Agentic Capabilities., July 2025.

#### Inference-Time Scaling

❖ Inference-time computation has emerged as a promising scaling axis for improving large language model reasoning.



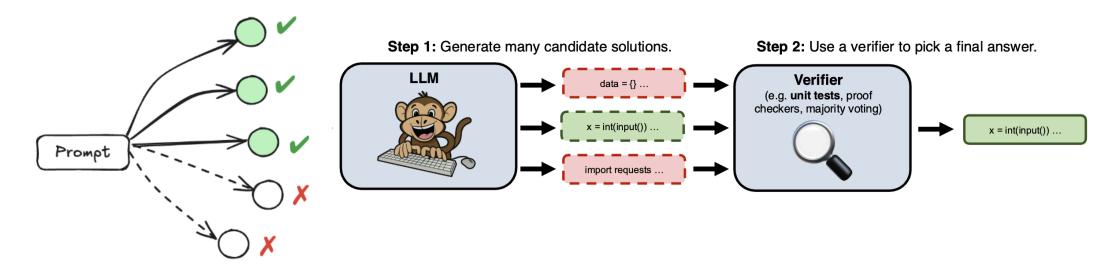
DeepSeek-Al. DeepSeek-R1: incentivizing reasoning capability in LLMs via reinforcement learning, January 2025

- \* There are various ways of utilizing test time resources for improving reasoning.
- Two main approaches are parallel and sequential scaling.



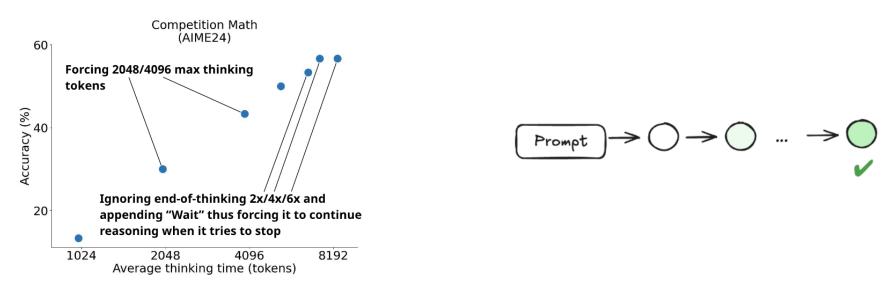
Snell, et al. "Scaling LLM test-time compute optimally can be more effective than scaling parameters for reasoning." 2025. Weng, Lilian. "Why We Think". Lil'Log (2025). https://lilianweng.github.io/posts/2025-05-01-thinking/

- \* There are various ways of utilizing test time resources for improving reasoning.
- Two main approaches are parallel and sequential scaling.



Snell, et al. "Scaling LLM test-time compute optimally can be more effective than scaling parameters for reasoning." 2025. Weng, Lilian. "Why We Think". Lil'Log (2025). https://lilianweng.github.io/posts/2025-05-01-thinking/
Brown, et al. "Large Language Monkeys: Scaling Inference Compute with Repeated Sampling", 2024

- \* There are various ways of utilizing test time resources for improving reasoning.
- Two main approaches are parallel and sequential scaling.

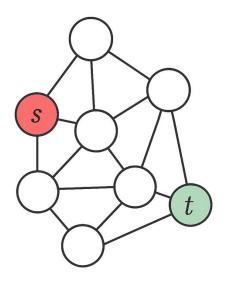


Snell, et al. "Scaling LLM test-time compute optimally can be more effective than scaling parameters for reasoning." 2025. Weng, Lilian. "Why We Think". Lil'Log (2025). https://lilianweng.github.io/posts/2025-05-01-thinking/Muennighoff, et al. "s1: Simple test-time scaling." (2025).

- \* There are various ways of utilizing test time resources for improving reasoning.
- Two main approaches are parallel and sequential scaling.

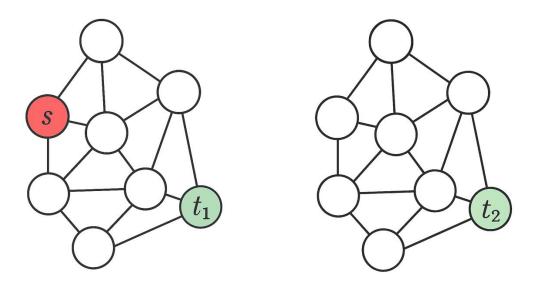
Can we quantify the trade-off between sequential and parallel scaling for reasoning problems?

- Our reasoning task is a symmetric variant of the graph connectivity task.
- (s, t)-Connectivity: Are nodes s and t connected in a given graph G?



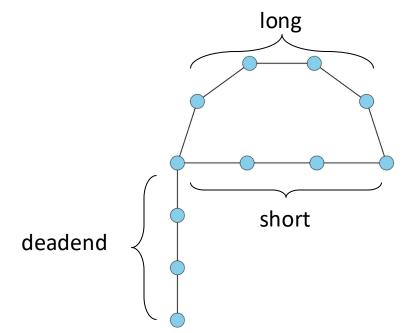
Is *s* connected to *t*?

- Our reasoning task is a symmetric variant of the graph connectivity task.
- (s, t)-Connectivity: Are nodes s and t connected in a given graph G?
- $(s, t_1, t_2)$ -Connectivity: Is node s connected to  $t_1$  or  $t_2$  in a given graph G?

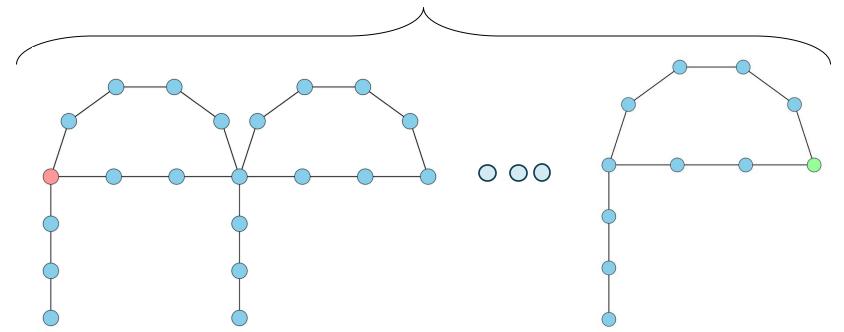


Is s connected to  $t_1$  or  $t_2$ ?

- Our reasoning task is a symmetric variant of the graph connectivity task.
- (s, t)-Connectivity: Are nodes s and t connected in a given graph G?
- $(s, t_1, t_2)$ -Connectivity: Is node s connected to  $t_1$  or  $t_2$  in a given graph G?
- We focus on Bridge(short, long, deadend, depth) graphs:

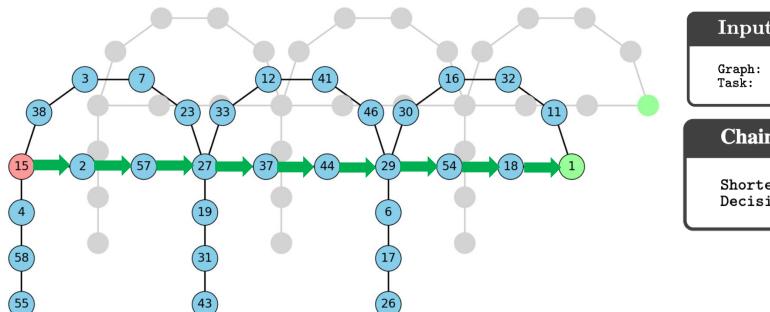


- Our reasoning task is a symmetric variant of the graph connectivity task.
- (s, t)-Connectivity: Are nodes s and t connected in a given graph G?
- $\diamond$  (s,  $t_1$ ,  $t_2$ )-Connectivity: Is node s connected to  $t_1$  or  $t_2$  in a given graph G?
- We focus on Bridge(short, long, deadend, depth) graphs:



#### Training Models with Different Sequential Scales

- ❖ We fix the bridge graph and generate many randomly labeled instances of it.
- ❖ A graph is encoded as a randomly ordered list of edges.
- \* We train models with CoT strategies of different sequential scales and evaluate them.



#### Input Prompt

Graph: [(29 54) (15 2) ... (47 9) (32 16)]

Task: 15 to 8 or 1 ?

#### Chain-of-thought

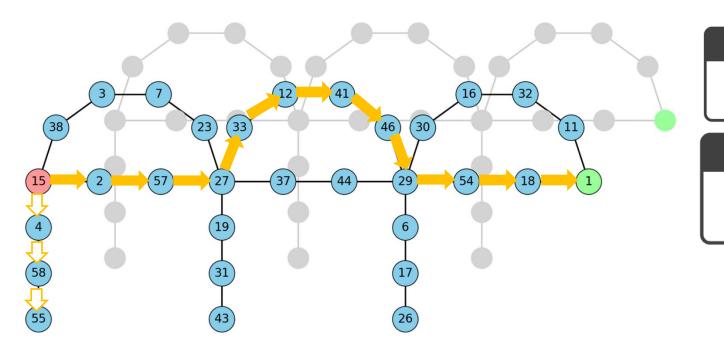
Shortest-Path: [15 2 57 27 37 44 29 54 18 1]

Decision: [1]

Bridge(short=3, long=5, deadend=3, depth=3)

#### Training Models with Different Sequential Scales

- ❖ We fix the bridge graph and generate many randomly labeled instances of it.
- ❖ A graph is encoded as a randomly ordered list of edges.
- \* We train models with CoT strategies of different sequential scales and evaluate them.



#### Input Prompt

Graph: [(29 54) (15 2) ... (47 9) (32 16)]

Chain-of-thought

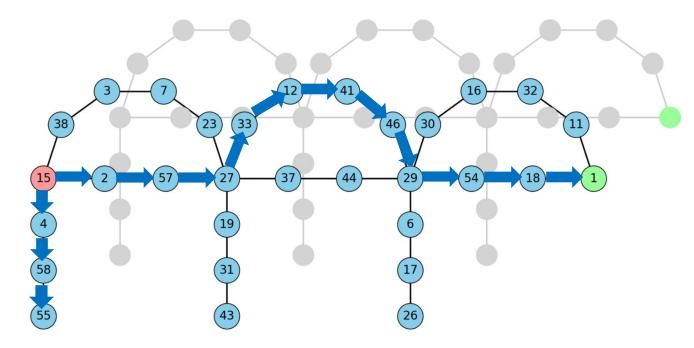
Path: [15 2 57 27 33 12 41 46 29 54 18 1]

Decision: [1]

Bridge(short=3, long=5, deadend=3, depth=3)

#### Training Models with Different Sequential Scales

- ❖ We fix the bridge graph and generate many randomly labeled instances of it.
- ❖ A graph is encoded as a randomly ordered list of edges.
- We train models with CoT strategies of different sequential scales and evaluate them.



Bridge(short=3, long=5, deadend=3, depth=3)

#### Input Prompt

Graph: [(29 54) (15 2) ... (47 9) (32 16)] Task: 15 to 8 or 1?

#### Chain-of-thought

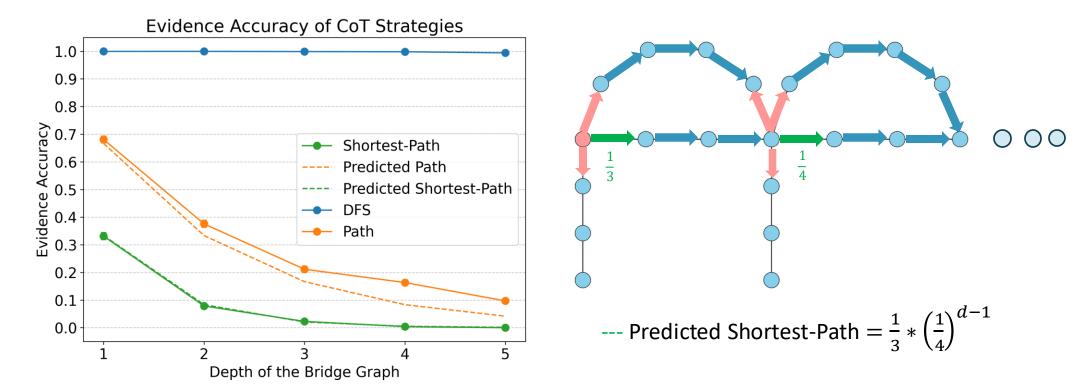
DFS: [15 4 58 55 2 57 27 33 12 41 46 29 54 18 1] Decision: [1]

#### $Verify(s, t_1, t_2, CoT)$

```
    if s ≠ CoT[1] or CoT[L] ∉ {t<sub>1</sub>, t<sub>2</sub>} then
    return false
    for i = 2 to L do
    if CoT[i] has no neighbor in CoT[1 : i - 1] then
    return false
    return true
```

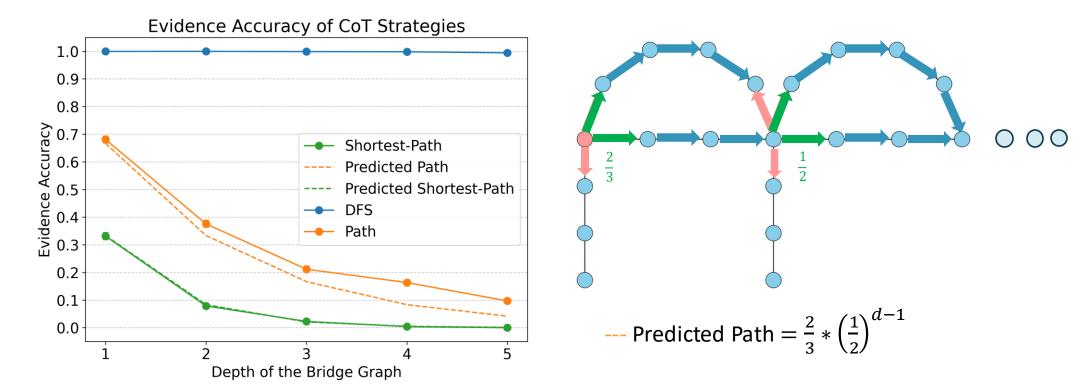
#### **Experimental Results**

- We train models for Bridge graphs with various depths.
- \* We observe that short CoT models have exponentially small accuracy.
- This accuracy is captured by the probability of in-distribution DFS traces.



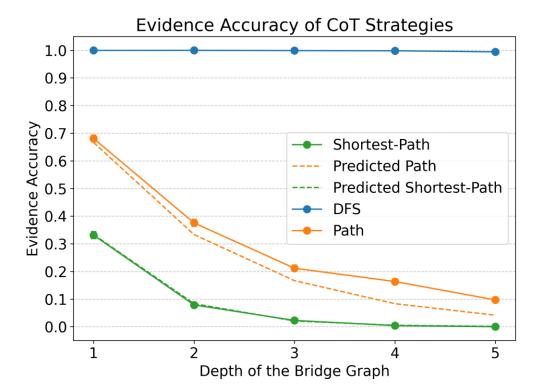
#### **Experimental Results**

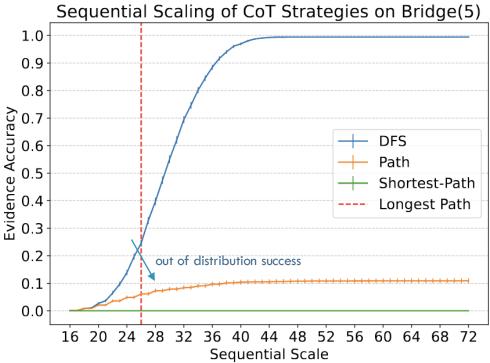
- We train models for Bridge graphs with various depths.
- \* We observe that short CoT models have exponentially small accuracy.
- This accuracy is captured by the probability of in-distribution DFS traces.



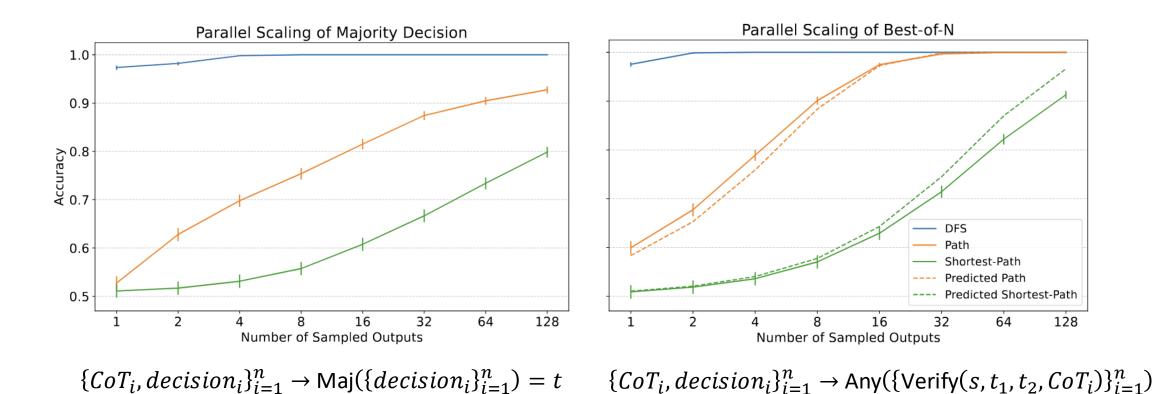
#### Experimental Results

- We train models for Bridge graphs with various depths.
- \* We observe that short CoT models have exponentially small accuracy.
- This accuracy is captured by the probability of in-distribution DFS traces.

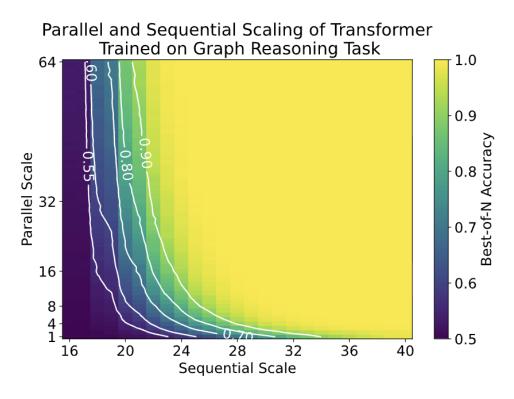




#### Parallel Scaling of Models Trained on Short CoTs

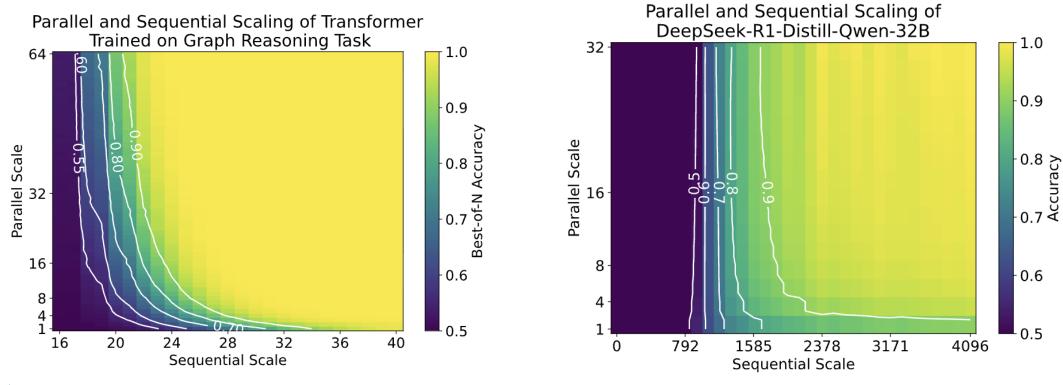


### Sequential and Parallel Scaling of CoT Models



- We evaluate model's accuracy with combinations of parallel and sequential scaling.
- Sequential scale: token budget for each chain of thought.
- ❖ Parallel scale: number of independent chains of thought.

# Sequential and Parallel Scaling of CoT Models



- We also evaluate frontier reasoning models on our graph connectivity task.
- We observe similar trends to our from-scratch training experiments.
- Sequential scaling has an exponential advantage in the short CoT regime.

# Theoretical Evidence for Necessity of Long CoT

- Based on Vertex Query Model
- Based on Transformer Expressivity Limitations

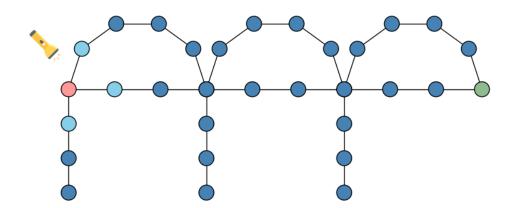
#### Theoretical Separation based on Vertex Query Model

- \* We observed that the model's accuracy is captured by the probability of in-distribution DFS traces:  $P_{G \sim \text{Bridge}}(\text{Verify}(M_S(G))) = P_{DFS}(D_S)$  for  $S \in \{\text{S-Path, Path, DFS}\}$ .
- The models cannot distinguish between the unvisited neighbors at inference-time, no matter how they were trained.
- Inspired by this observation, we introduce Vertex Query Model.

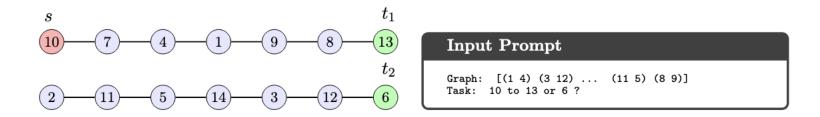


#### Theoretical Separation based on Vertex Query Model

- ❖ **Definition.** An algorithm for  $(s, t_1, t_2)$ -connectivity is implementable in the **Vertex Query Model (VQM)** if it takes as input  $s_1, t_1, t_2$ , and can only access the graph G through "neighborhood queries"  $N_G$ , which given a vertex v, returns the set  $N_G(v) = \{u: \exists (v, u) \in E\}$ .
- ❖ We also define the **Restricted Vertex Query Model (RVQM)**, where the algorithm can only initially query s, and subsequently can only query vertices in the sets returned by previous queries.

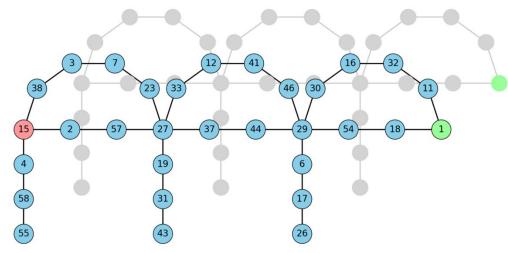


### Two-Path Graph Connectivity with VQM



- \* Consider the graph G given by two disjoint paths of length  $L \ge 3$ . Suppose  $s, t_1, t_2$  are three distinct endpoints of these paths. Then:
- O(L) queries are sufficient: There is a VQM algorithm that executes L-1 queries and solves the  $(s, t_1, t_2)$ -connectivity problem with probability 1.
- \*  $\Omega(L)$  queries are needed: For any VQM algorithm that executes  $q \leq (L-2)/2$  queries, the probability of correctness of the algorithm on  $(s, t_1, t_2)$ -connectivity is exactly 1/2.

### Bridge Graph Connectivity with RVQM



- $\diamond$  Consider an algorithm in the Restricted Vertex Query Model solving  $(s, t_1, t_2)$ -connectivity.
- \*Sequential scaling succeeds: There exists an algorithm which makes  $(1 + \delta)2$ ldqueries and succeeds with probability at least  $1 \exp\left(-\frac{1}{2}d\delta^2\right)$ .
- \*Parallel scaling fails: Any algorithm which makes no more than  $(1-\delta)\frac{3}{2}ld$  queries succeeds with probability at most  $\frac{1}{2} + exp\left(-\frac{1}{2}\delta^2\frac{3}{2}d\right)$ . Thus, parallel scaling with majority vote needs independent runs to succeed with probability  $\geq 2/3$ .

#### Theoretical Separation based on Transformer Expressivity

\*We compare many chains of constant length to one long chain of polynomial length.

**Theorem 1** (Informal statement of Theorem 4). Assume the complexity-theoretic statement that  $TC^0 \not\supseteq L$ . Then the following is true for bounded-depth, limited-precision transformers.

- Sequential scaling succeeds: There is a constant c > 0 such that a transformer with a CoT of length  $\leq n^c$  solves any  $(s, t_1, t_2)$ -connectivity problem.
- Parallel scaling fails: For any constants  $C_1, C_2 > 0$ , and any transformer architecture, majority vote over  $\leq n^{C_1}$  independently-sampled CoTs of length  $\leq C_2$  has accuracy  $\leq \frac{1}{2} + o(1)$  for  $(s, t_1, t_2)$ -connectivity problems.

### Proof Ingredients

#### Sequential scaling succeeds:

- **Corollary 2.1 from (Merrill and Sabharwal, 2023) :**  $TIME(t(n)) \subseteq CoT(t(n))$ .
- \* Log-precision transformers with t(n)-length chain of thought can simulate Turing machines that run in time t(n).
- $\clubsuit$  They can solve  $(s, t_1, t_2)$ -connectivity using standard graph traversal algorithms like depth-first search.

### **Proof Ingredients**

#### Parallel scaling fails:

**Definition 5** ( $\mathsf{TC}^0$  computational model). A  $\mathsf{TC}^0$  circuit is a boolean circuit with AND, OR, NOT, and MAJORITY gates of potentially unbounded fan-in. A  $\mathsf{TC}^0$  circuit family is a collection of circuits indexed by the input size n, such that for each input size the circuit has polynomial width and bounded depth.

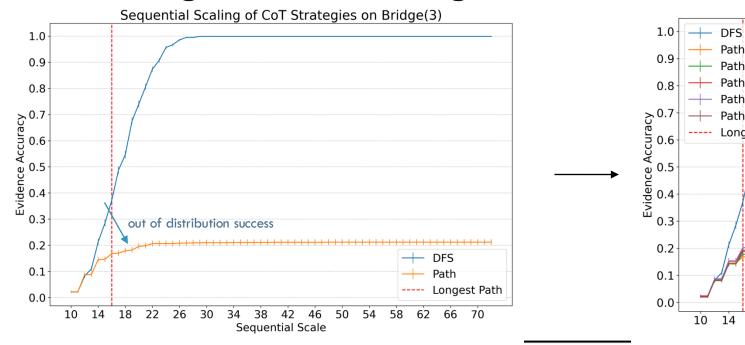
**Proposition 1** (Transformers are in  $\mathsf{TC}^0$ ; implied by Theorem 14 of (Chiang, 2024)). For any bounded-depth softmax-attention transformer  $T: \Sigma^* \to \mathbb{R}^{|\Sigma|}$  and any polynomial p(n), there is a function  $\hat{T}: \Sigma^* \to \mathbb{R}^{|\Sigma|}$  in  $\mathsf{TC}^0$  that approximates T to  $2^{-p(n)}$  additive error on inputs of length n.

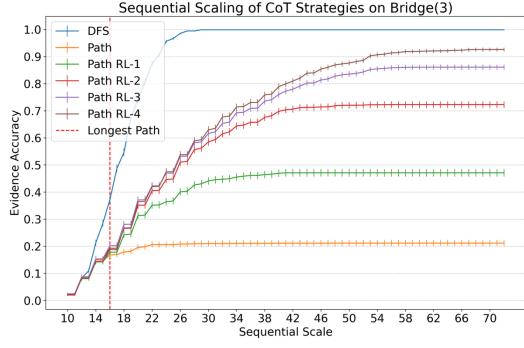
#### **Proof Steps**

#### Parallel scaling fails:

- Step 0: For transformer  $T: \Sigma^* \to R^{|\Sigma|}$  and  $x \in \Sigma^k$ , let  $D_{T,m}(x)$  denote the autoregressive distribution formed by sampling m tokens autoregressively from T.
- $\clubsuit$  Step 1: Find  $TC^0$  function  $\widehat{T}: \Sigma^* \to R^{|\Sigma|}$ , such that  $D_{\widehat{T},p(n)}(x)$  approximates  $D_{T,p(n)}(x)$ .
- \* Step 2: Simulate constant-length CoT with a randomized  $TC^0$  function  $\tilde{T}: (\Sigma^* \cup \{0,1\})^* \to \Sigma$ .
- \* Step 3: Take majority of constant-length CoTs and derandomize it to construct a  $TC^0$  function that solves  $(s, t_1, t_2)$ -connectivity.
- \* Step 4: Provide a  $TC^0$  reduction from the L complete (s, t)-connectivity problem to the  $(s, t_1, t_2)$ -connectivity problem.

# **Emergence of Long CoT**



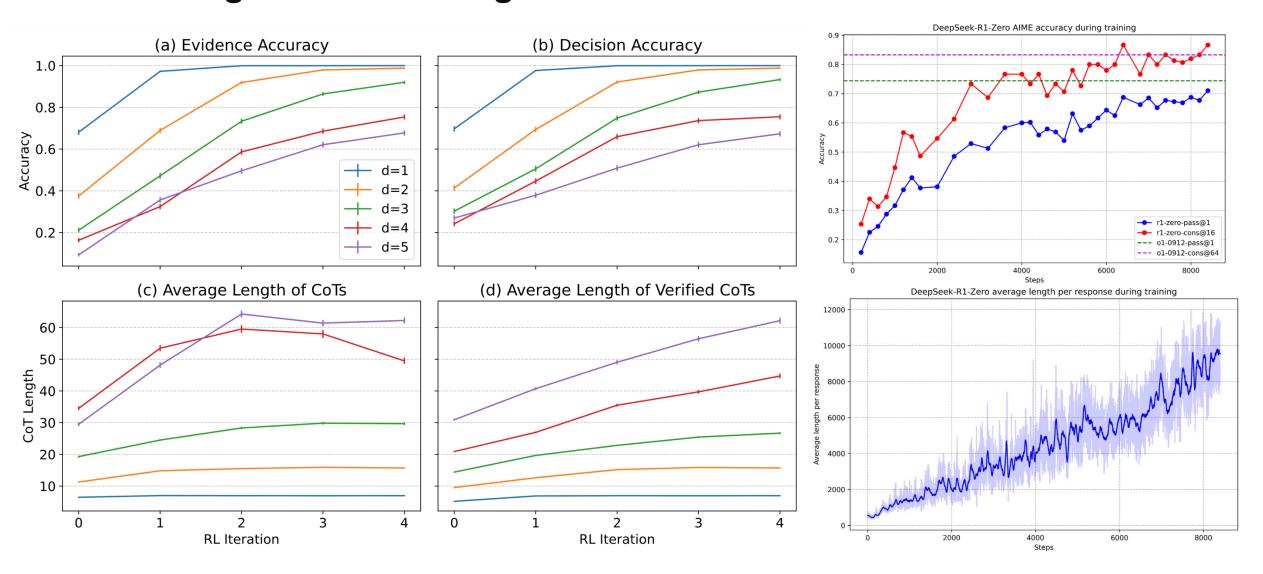


RL Iteration(M, D) Zelikman, Eric, et al. "Star: Bootstrapping reasoning with reasoning." (2022)

- 1: verified  $\leftarrow$  empty list
- 2: **for** each task in *D* **do**
- 3:  $(CoT, decision) \leftarrow M(task)$
- 4: **if** VERIFY(task, CoT) **then**
- 5: add (task, CoT, decision) to verified
- 6: Fine-tune M on verified

#### **Emergence of Long CoT**

Guo, Daya, et al. "Deepseek-r1: Incentivizing reasoning capability in Ilms via reinforcement learning." (2025).









Ezra Edelman



Enric Boix



Eran Malach



Samy Jelassi

