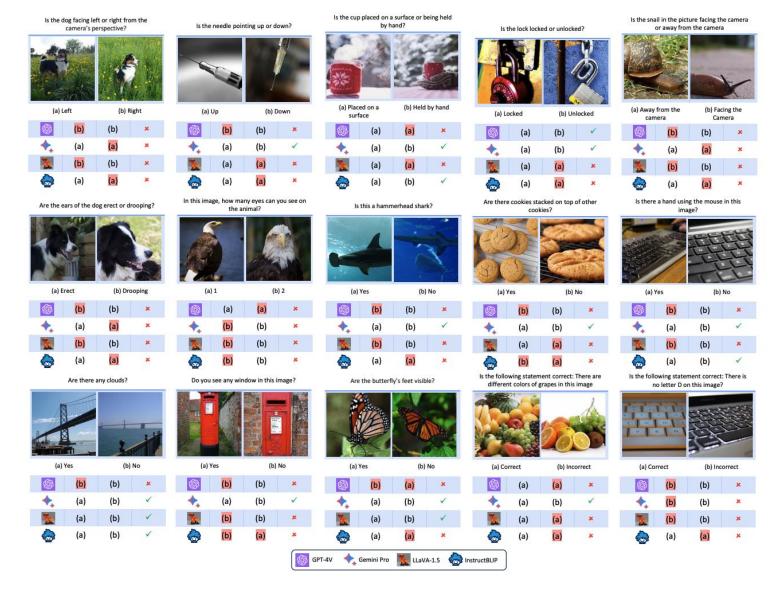
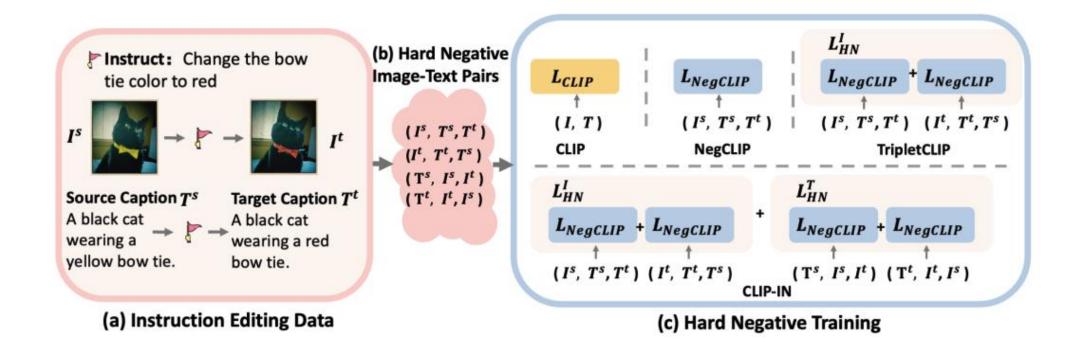

VITRIX-CLIPIN: Enhancing Fine-Grained Visual Understanding in CLIP via Instruction Editing Data and Long Captions


NeurIPS 2025

Ziteng Wang 2025.12

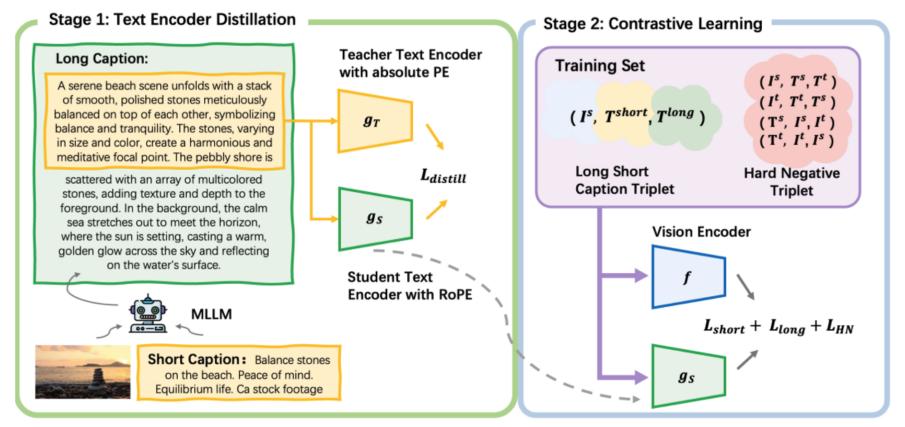
Motivation: VLMs fail in capture fine-grained details

Motivation: MLLMs fail in understanding fine-grained images



Why VLMs cannot see tiny items/features?

- The caption is too short to describe details in the image.
- The ViT do not have fine-grained perception ability.


• ...

Method: ViTRIX-CLIPIN

Instruction Editing Data as Hard Negatives

Method: ViTRIX-CLIPIN

Text encoder distillation

Performance-General CLIP Benchmark

Table 1: Evaluation of zero-shot performance on various image benchmarks.

			CLS		Short C	aption 1	Retrieva	al	<u> </u>	4.3 84.2 83.7 45.3 44 6.8 92.3 91.9 61.7 62 1.0 86.5 83.6 37.2 36 2.0 91.5 89.4 47.2 47 2.0 95.8 95.6 44.2 52 2.6 73.4 82.7 40.1 46 3.8 97.4 96.8 66.7 66 3.4 93.5 91.6 58.4 61 3.8 92.5 90.3 68.7 67 3.5 93.8 92.4 70.5 69 3.5 95.4 93.9 72.7 71 3.0 76.4 76.2 45.4 50 7.3 81.5 80.7 52.5 54 3.1 70.7 72.8 43.4 49			 1
Method	Backbone	Res	IN-1K		Fli	ckr	CO	CO		Share	GPT4V	D	CI
			Top-1	Avg	$I{\rightarrow}T$	$T{\rightarrow}I$	$I{\rightarrow}T$	$T{\rightarrow}I$	Avg	$I{\rightarrow}T$	$T{\rightarrow} I$	$I{\rightarrow}T$	$T \rightarrow I$
OpenAI CLIP [30]	ViT-L/14	224	75.5	60.7	85.2	64.9	56.3	36.5	64.3	84.2	83.7	45.3	44.0
Ours	ViT-L/14	224	76.3	72.9	92.9	79.4	68.9	50.5	76.8	92.3	91.9	61.7	62.0
OpenAI CLIP [30]	ViT-L/14	336	76.6	62.5	87.4	67.3	58.0	37.1	61.0	86.5	83.6	37.2	36.4
EVA-CLIP [37]	ViT-L/14	336	80.4	69.8	89.2	77.9	64.2	47.9	69.0	91.5	89.4	47.2	47.8
Long-CLIP [55]	ViT-L/14	336	73.5	68.8	90.0	76.2	62.8	46.3	72.0	95.8	95.6	44.2	52.5
FineCLIP [15]	ViT-L/14	336	60.8	-	-	-	-	-	60.6	73.4	82.7	40.1	46.2
FG-CLIP [50]	ViT-L/14	336	76.1	73.8	93.7	81.5	68.9	50.9	81.8	97.4	96.8	66.7	66.1
Ours	ViT-L/14	336	77.0	73.1	93.8	79.3	68.2	51.1	76.4	93.5	91.6	58.4	61.9
DFN-H [8]	ViT-H/14	224	83.4	74.8	92.8	80.1	72.3	53.9	79.8	92.5	90.3	68.7	67.5
Ours	ViT-H/14	224	83.4	75.6	93.0	80.8	73.6	54.8	81.5	93.8	92.4	70.5	69.1
DFN-H [8]	ViT-H/14	378	84.4	75.9	94.0	82.0	71.9	55.6	82.3	93.9	92.5	71.6	71.0
Ours	ViT-H/14	378	84.1	76.8	94.6	82.2	74.0	56.4	83.5	95.4	93.9	72.7	71.9
SigLIP2 [40]	ViT-SO/14	224	83.2	76.4	94.6	84.3	71.5	55.1	62.0	76.4	76.2	45.4	50.0
Ours	ViT-SO/14	224	83.4	78.8	94.9	85.1	76.2	58.9	67.3	81.5	80.7	52.5	54.4
SigLIP2 [40]	ViT-SO/16	384	84.1	77.1	95.9	85.3	71.2	56.0	59.1	70.7	72.8	43.4	49.6
Ours	ViT-SO/16	384	83.7	79.6	96.4	85.6	76.5	59.8	64.0	77.7	76.4	50.0	51.7

Performance-MMVP-VLM

Table 2: Performance of CLIP based models on various visual patterns of MMVP-VLM benchmark. Symbols for visual patterns as ([39]) are inherited: ②: Orientation and Direction, Q: Presence of Specific Features, ②: State and Condition, 13: Quantity and Count, , P: Positional and Relational Context, ②: Color and Appearance, ③: Structural and Physical Characteristics, A: Texts, O: Viewpoint and Perspective.

Method	Backbone	Res	Ø	Q	2	13	•	•	⊅ °	A		Avg
OpenAI CLIP [30]	ViT-L/14	224	6.7	13.3	20.0	20.0	13.3	53.3	20.0	6.7	13.3	18.5
Ours	ViT-L/14	224	6.7	33.3	53.3	20.0	13.3	60.0	33.3	26.7	26.7	30.4
OpenAI CLIP [30]	ViT-L/14	336	0.0	20.0	40.0	20.0	6.7	20.0	33.3	6.7	40.0	20.0
DIVA [44]	ViT-L/14	336	26.7	20.0	33.3	13.3	13.3	46.7	26.7	6.7	40.0	25.2
Ours	ViT-L/14	336	13.3	13.3	46.7	13.3	13.3	53.3	33.3	20.0	28.3	26.1
DFN [8]	ViT-H/14	224	20.0	26.7	73.3	26.7	26.7	66.7	46.7	20.0	53.3	39.9
Ours	ViT-H/14	224	20.0	26.7	73.3	26.7	33.3	66.7	46.7	26.7	53.3	41.5
DFN [8]	ViT-H/14	378	13.3	20.0	53.3	33.3	26.7	66.7	40.0	20.0	40.0	34.8
Ours	ViT-H/14	378	13.3	20.0	60.0	33.3	26.7	66.7	40.0	20.0	46.7	36.3
SigLIP2 [40]	ViT-SO/14	224	13.3	20.0	60.0	26.7	6.7	80.0	53.3	20.0	40.0	35.6
Ours	ViT-SO/14	224	13.3	13.3	60.0	26.7	20.0	80.0	46.7	13.3	53.3	36.3
SigLIP2 [40]	ViT-SO/16	384	13.3	20.0	46.7	40.0	20.0	73.3	53.3	6.7	46.7	35.6
Ours	ViT-SO/16	384	13.3	20.0	60.0	33.3	26.7	66.7	40.0	20.0	46.7	36.3

Performance-Compositional Reasoning

Table 3: Evaluation on compositional reasoning benchmarks.

Method	Backbone	Res		ARO	•	MMVP		Win	Winoground		SugarCrepe	SPEC		
			Avg	relation	attribute		Avg	text	image	group			T->I	I->T
OpenAI CLIP [30]	ViT-L/14	224	58.9	59.3	58.5	18.5	15.9	28.3	10.5	8.8	75.6	32.3	33.2	31.3
Ours	ViT-L/14	224	64.4	64.3	64.4	30.4	17.1	28.0	13.8	9.5	77.5	36.3	37.6	35.0
OpenAI CLIP [30]	ViT-L/14	336	61.0	60.1	61.9	20.0	15.4	28.3	10.5	7.5	74.8	32.1	32.8	31.1
Ours	ViT-L/14	336	60.7	58.1	63.2	26.1	18.1	33.0	11.8	9.5	77.2	35.2	35.1	35.2
SigLIP2 [40]	ViT-SO/14	224	49.7	49.0	50.4	35.6	6.9	9.0	9.3	2.5	49.5	27.3	27.4	27.2
Ours	ViT-SO/14	224	50.7	49.5	51.9	36.3	8.5	14.3	7.5	3.8	50.5	30.5	30.6	30.4
SigLIP2 [40]	ViT-SO/16	384	48.9	47.3	50.5	35.6	6.7	9.3	8.5	2.3	50.9	27.5	27.6	27.5
Ours	ViT-SO/16	384	50.5	50.9	50.0	36.3	7.0	13.5	5.5	2.0	51.7	30.5	30.2	30.8

Performance-General MLLM Benchmark

Table 4: Performance gains achieved by our enhanced CLIP visual backbone for MLLM. All methods use OpenAI ViT-L/14 at 336×336 resolution as pretrained backbone.

Method	ViT	LLM	MMVP		POPE		MME	MMBench		LLaVA-Wild	
	VII	LLW		rand	pop	adv		en	cn	LLa VA-VIII	
	OpenAI CLIP [30]		24.7	87.3	86.1	84.2	1510.7	64.3	58.3	65.4	
LLaVA-1.5 [19]	DIVA [44]	Vicuna-7B	31.3	87.9	87.0	84.6	1500.6	66.4	60.6	66.3	
	Ours		28.0	88.5	87.2	85.2	1709.0	72.9	70.3	68.5	

Thank you