

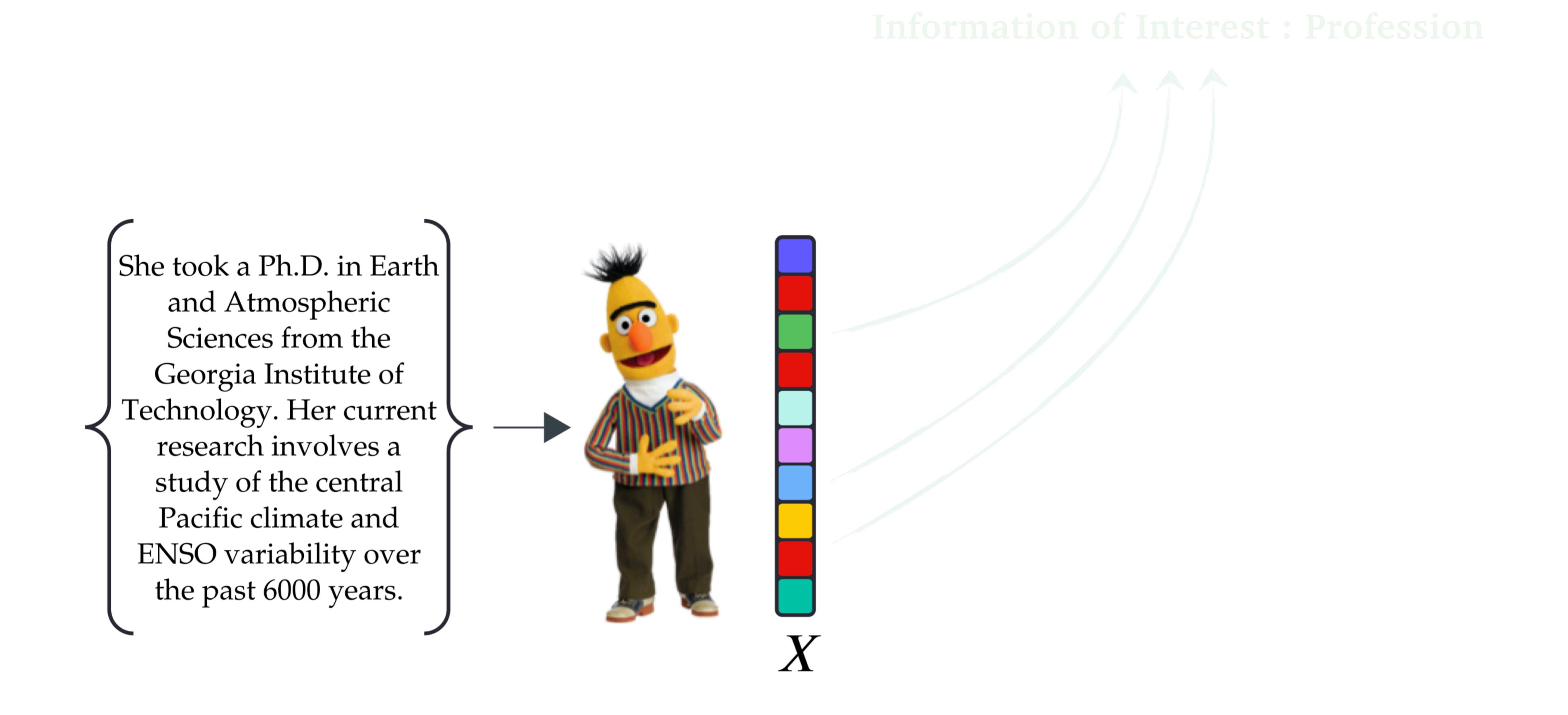
Obliviator Reveals the Cost of Nonlinear Guardedness in Concept Erasure

Ramin Akbari*

Milad Afshari*

Vishnu Naresh Boddeti

Why Do We Need Erasure?

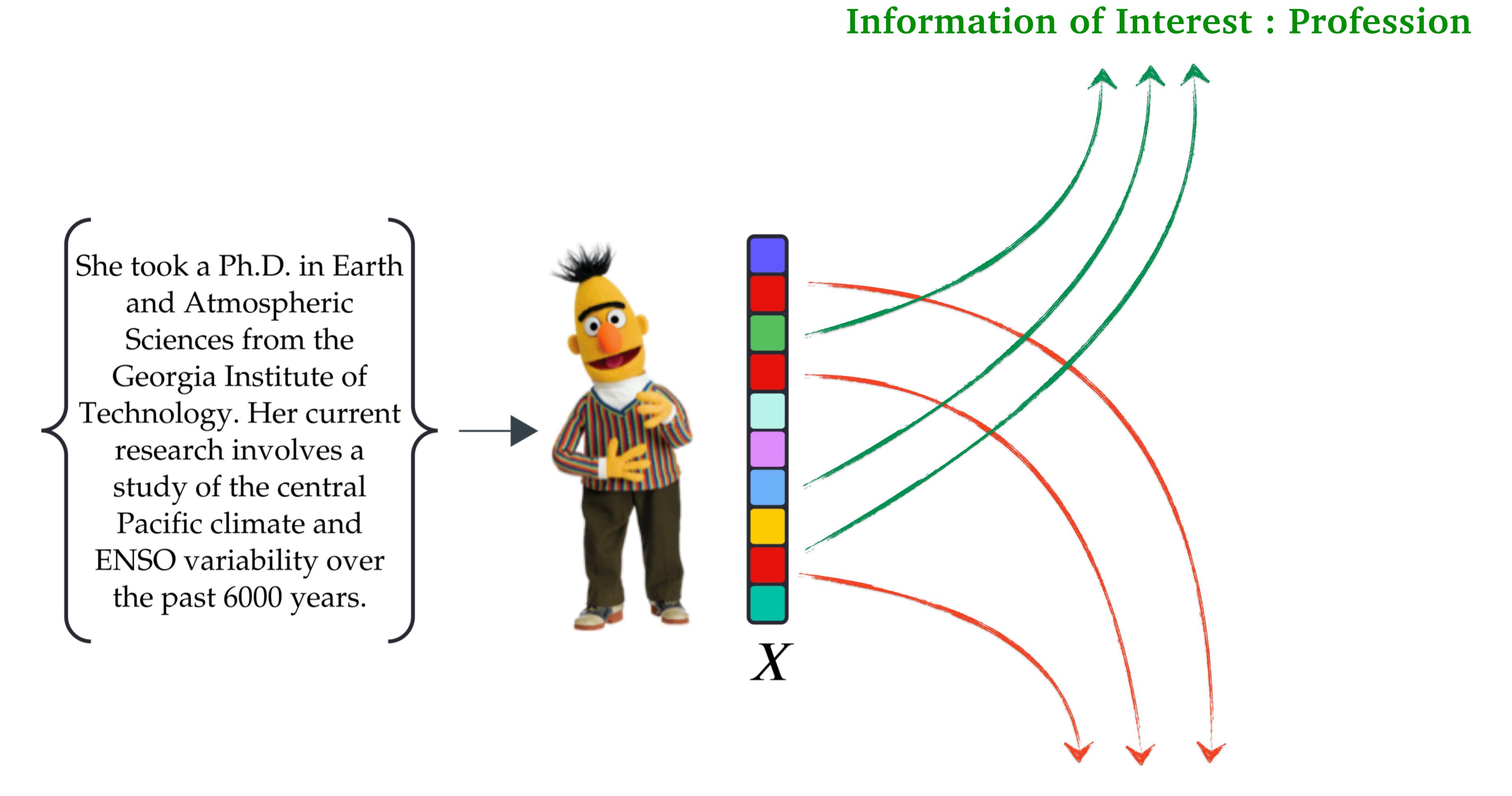


Why Do We Need Erasure?

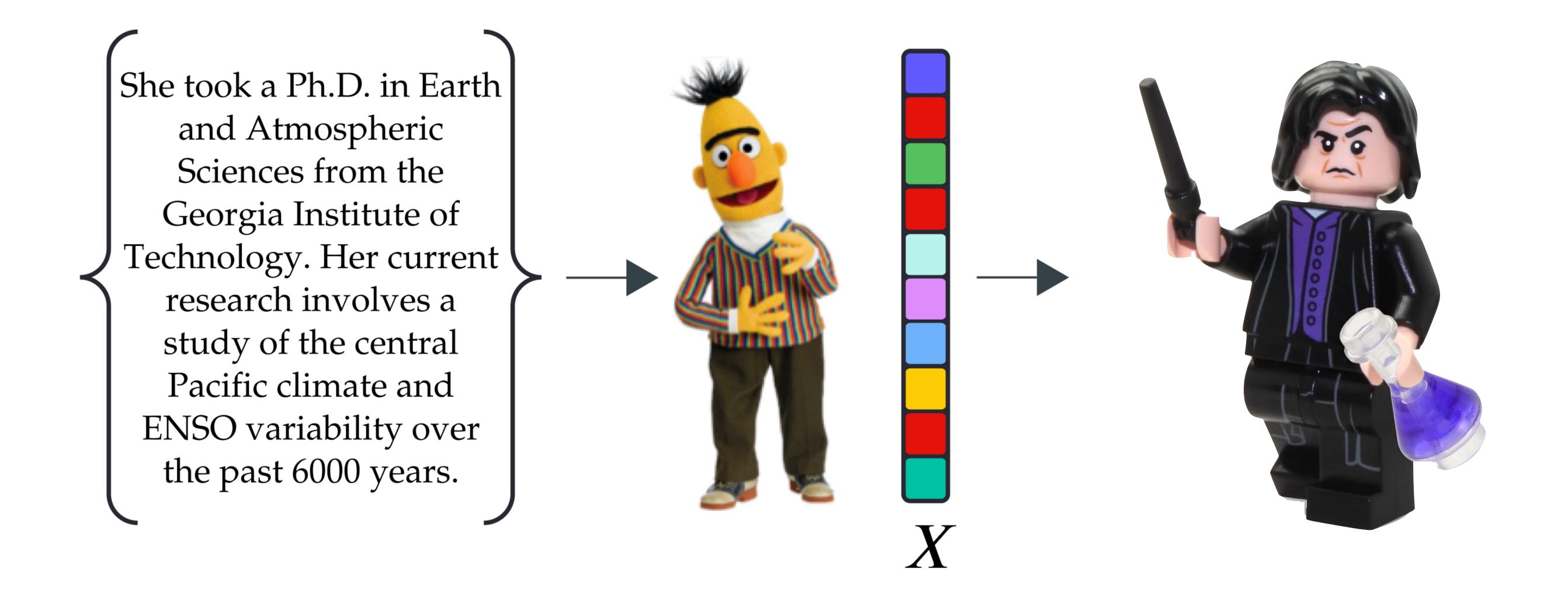
Information of Interest: Profession She took a Ph.D. in Earth and Atmospheric Sciences from the Georgia Institute of Technology. Her current research involves a study of the central Pacific climate and ENSO variability over the past 6000 years.

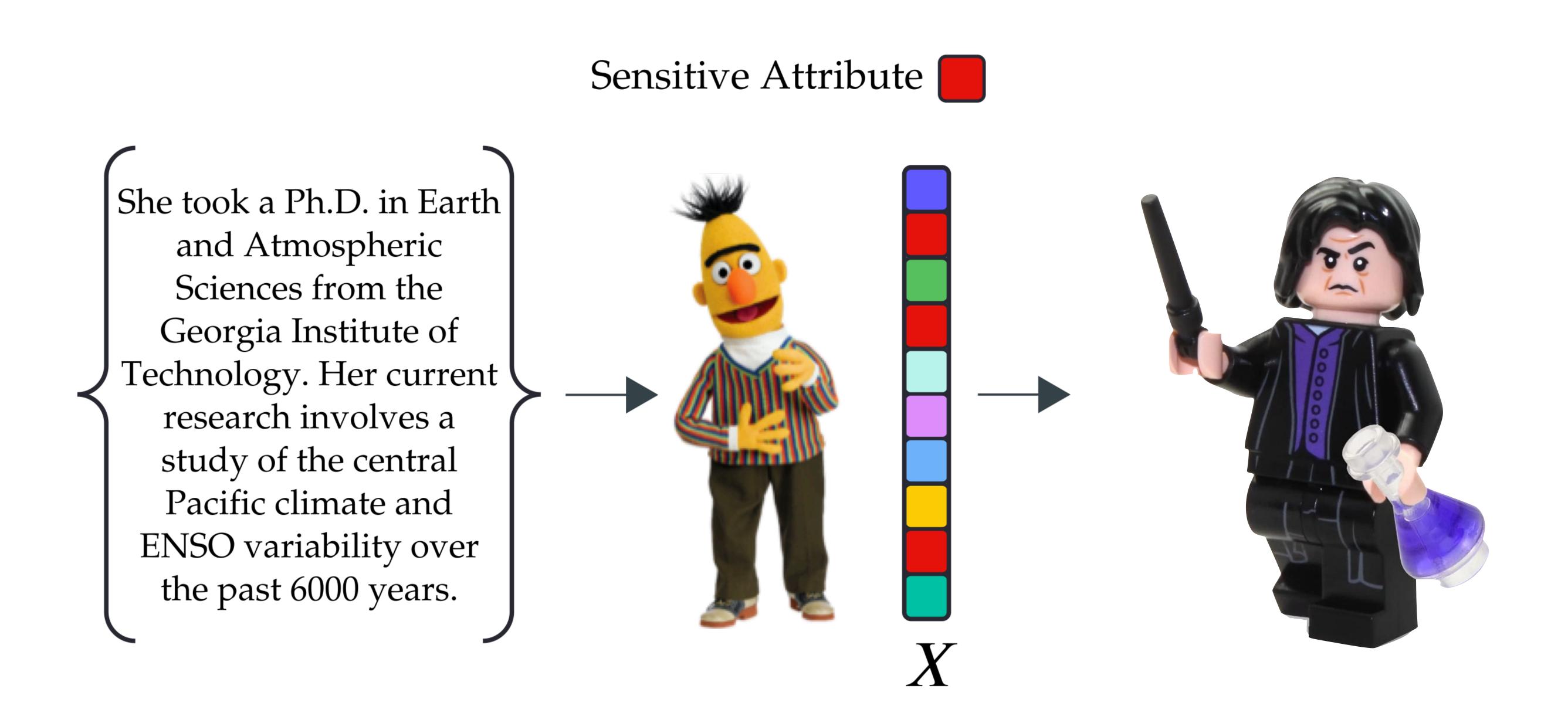
Unwanted Information: Gender

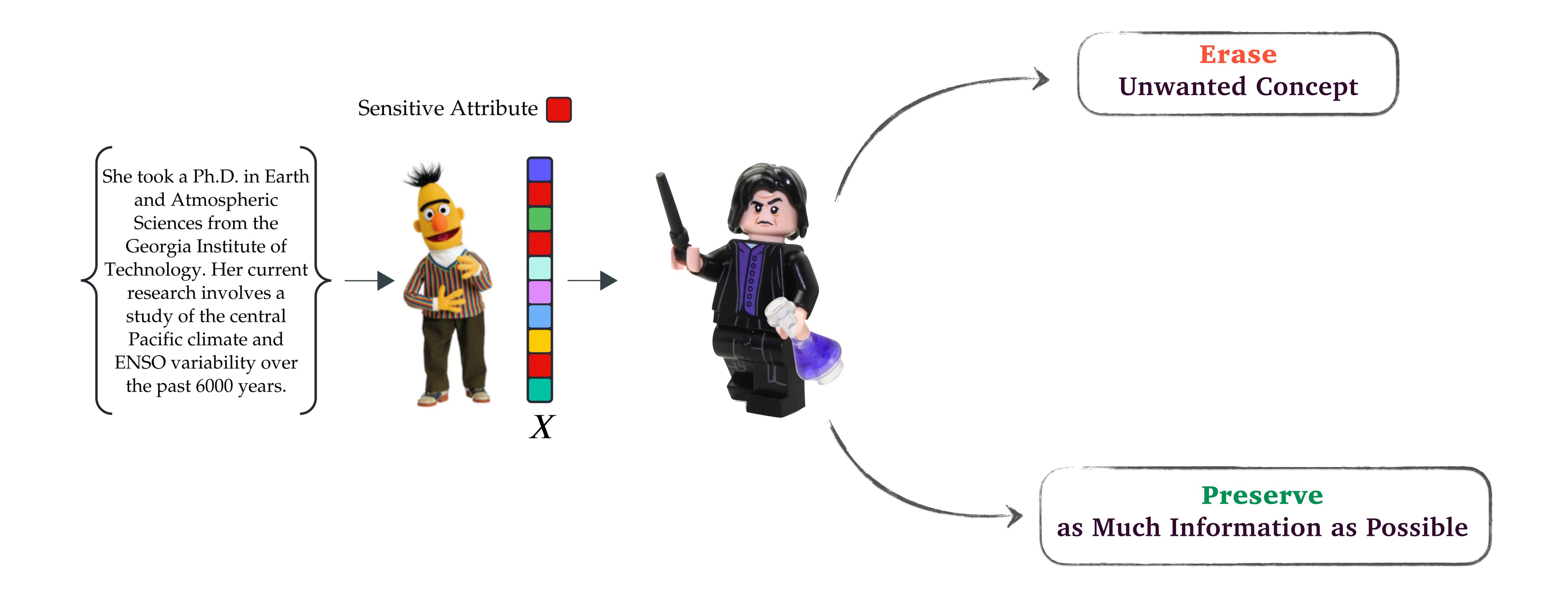
Why Do We Need Erasure?

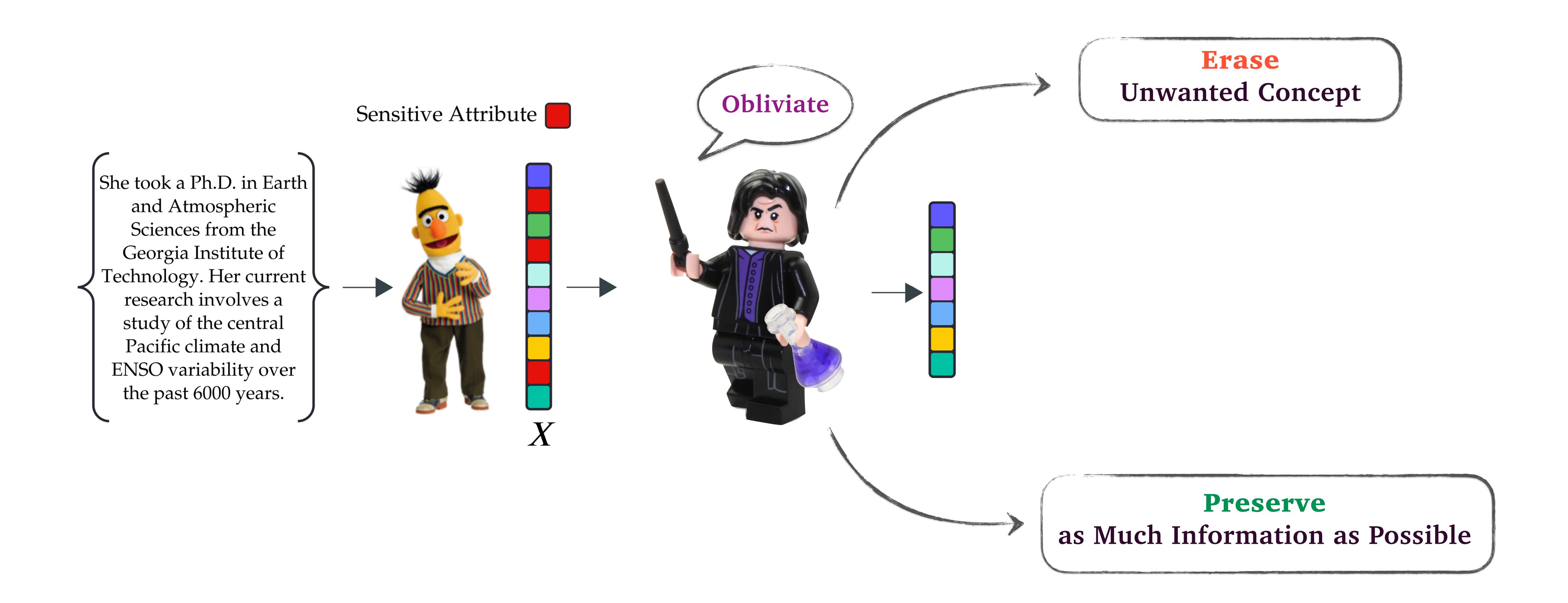


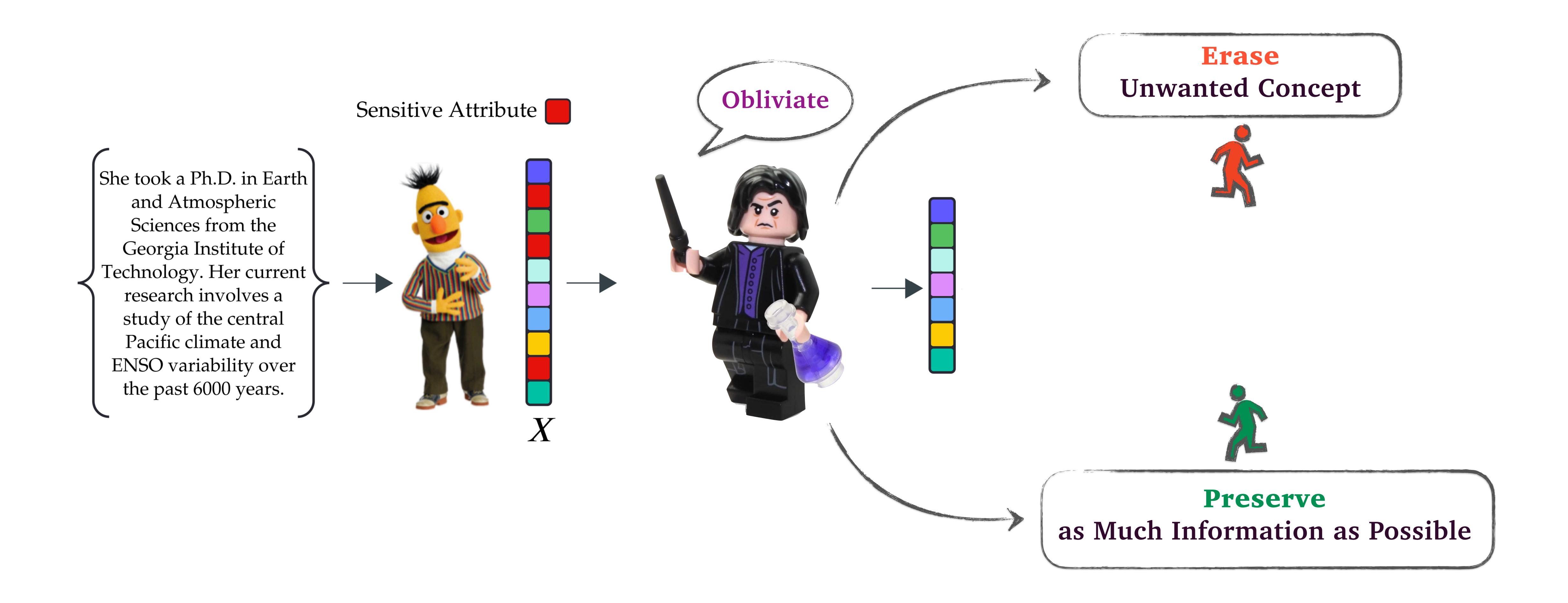
Unwanted Information: Gender

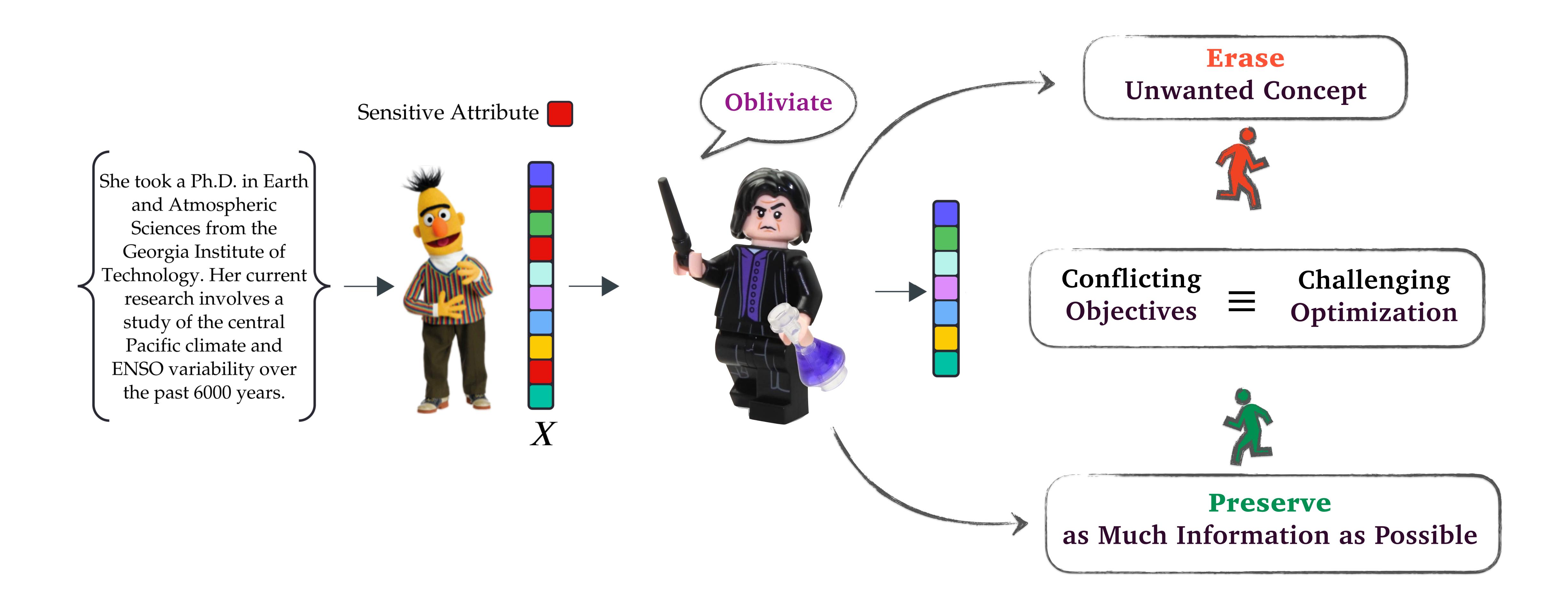




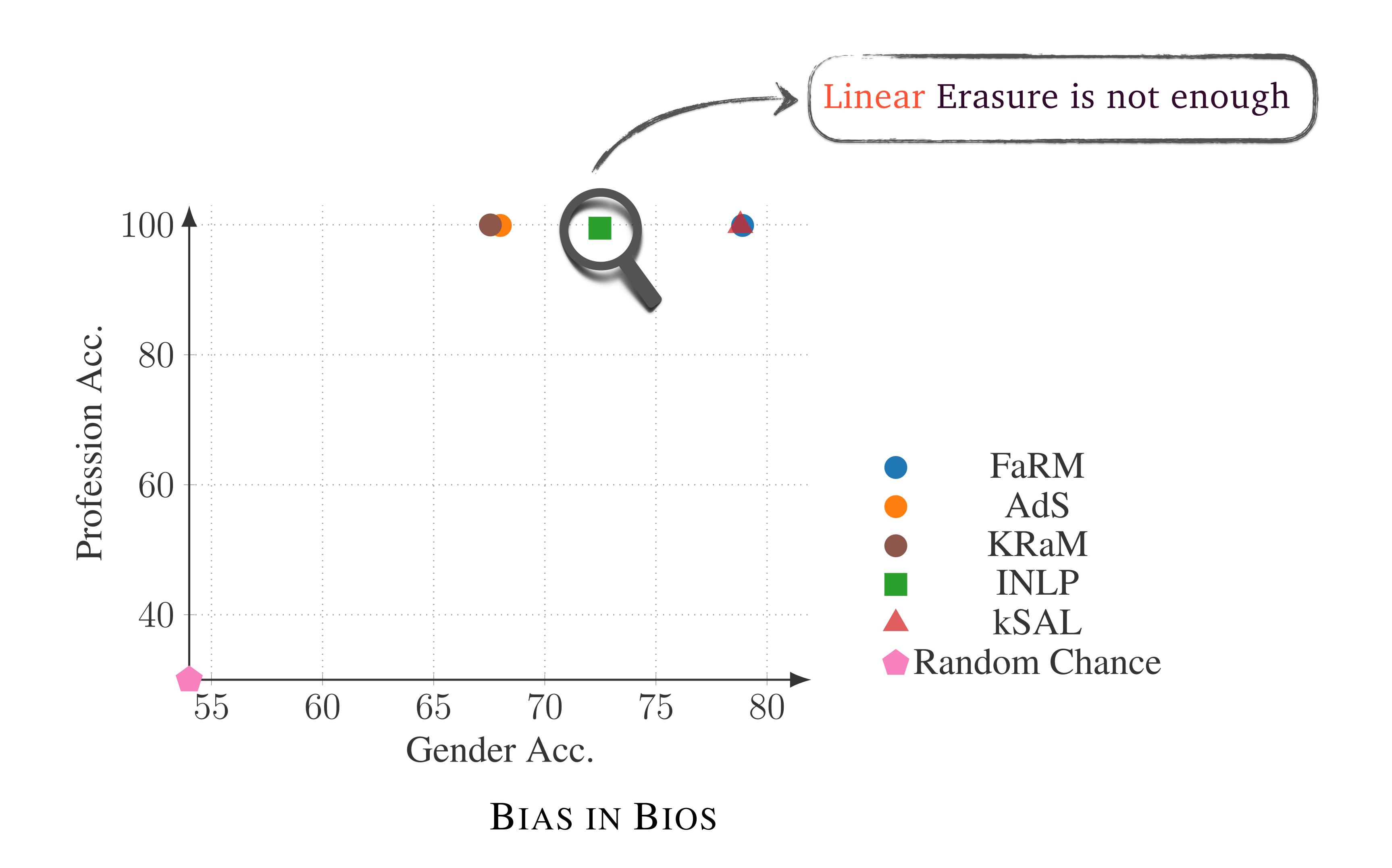






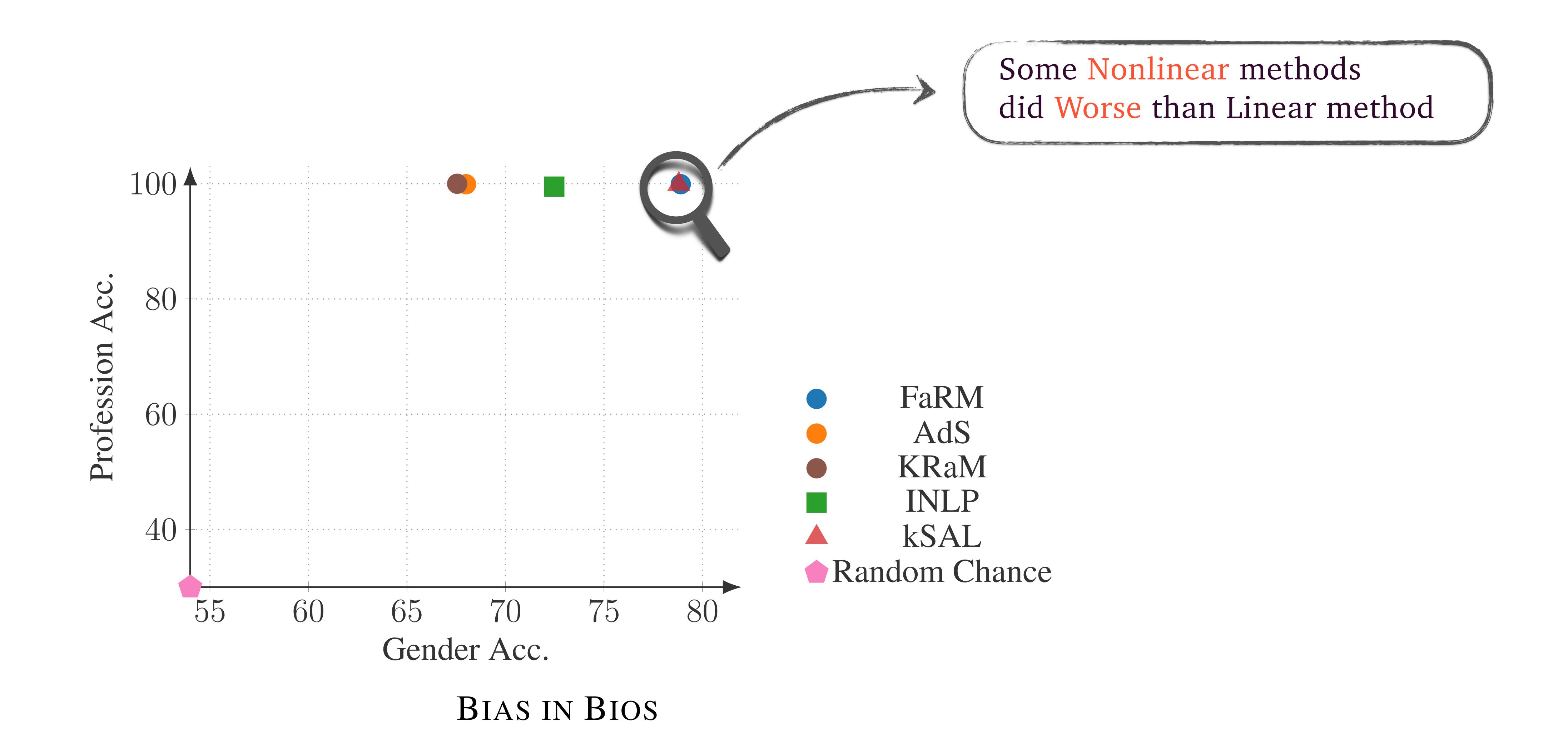


How Effective Are Current Methods In Concept Erasure?



Utility: Profession

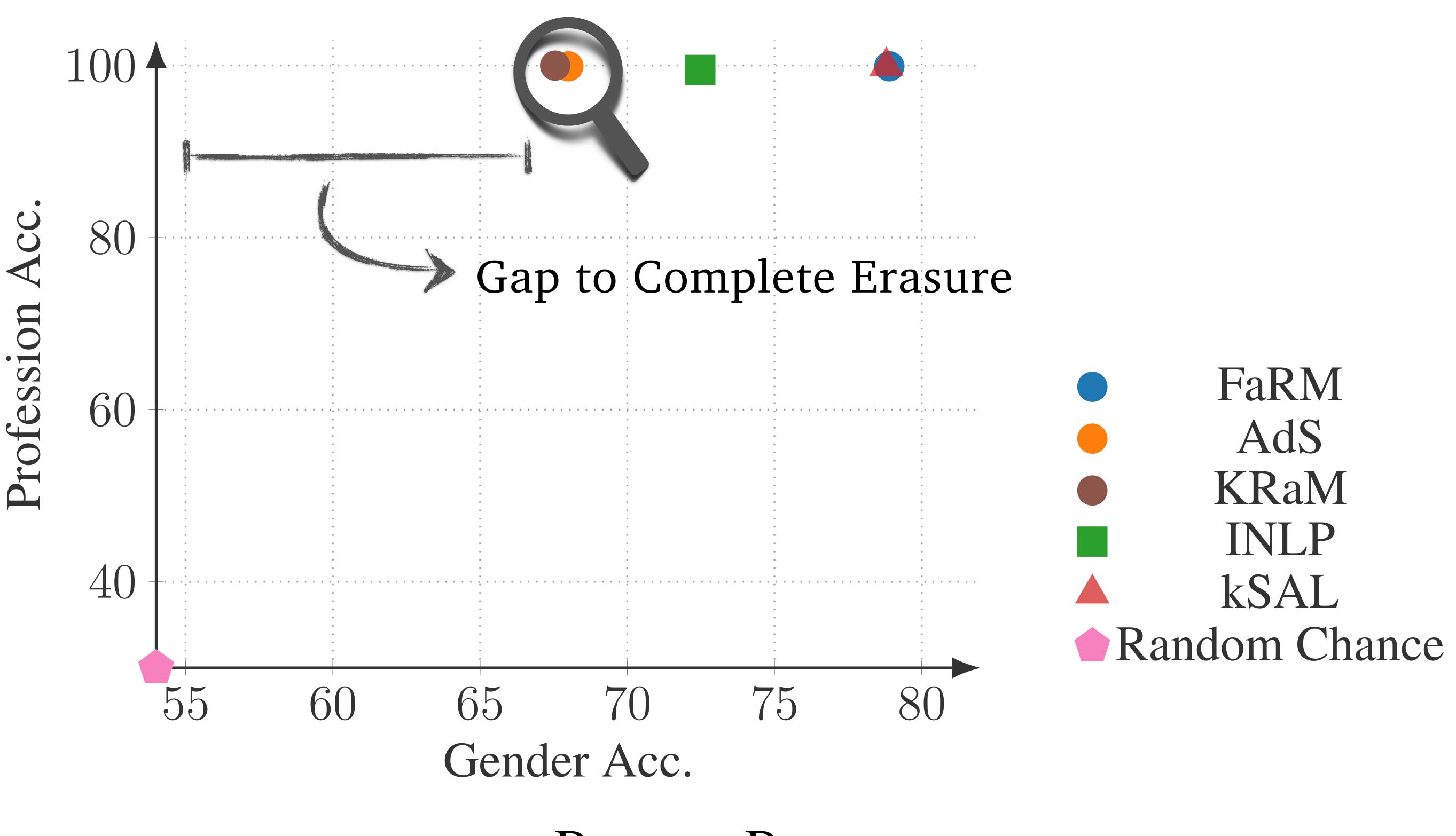
How Effective Are Current Methods In Concept Erasure?



Utility: Profession

How Effective Are Current Methods In Concept Erasure?

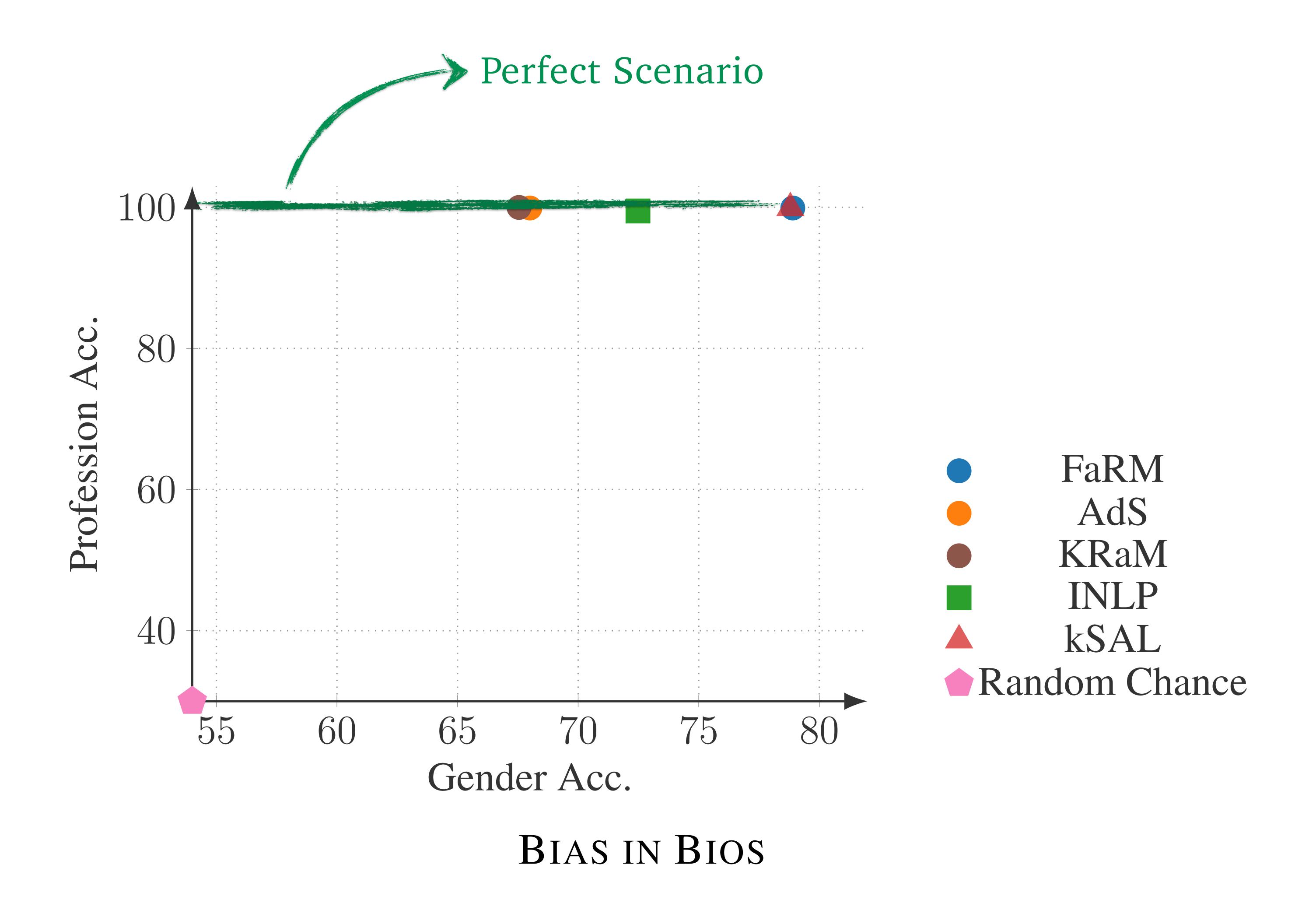
Better Performance but Erasure is Not Complete



BIAS IN BIOS

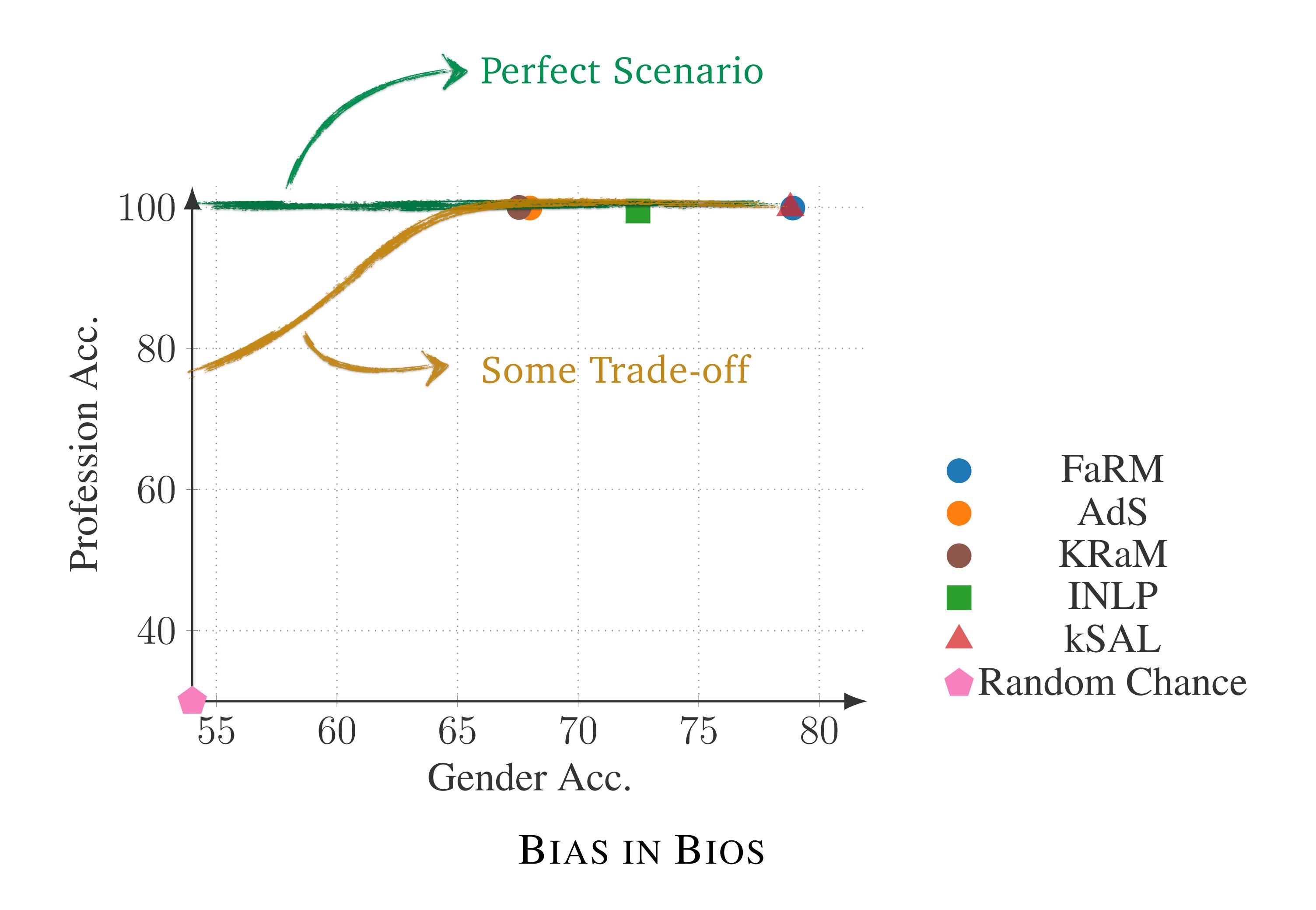
Utility: Profession

What Is The Complete Utility-Erasure Trade-off Profile?



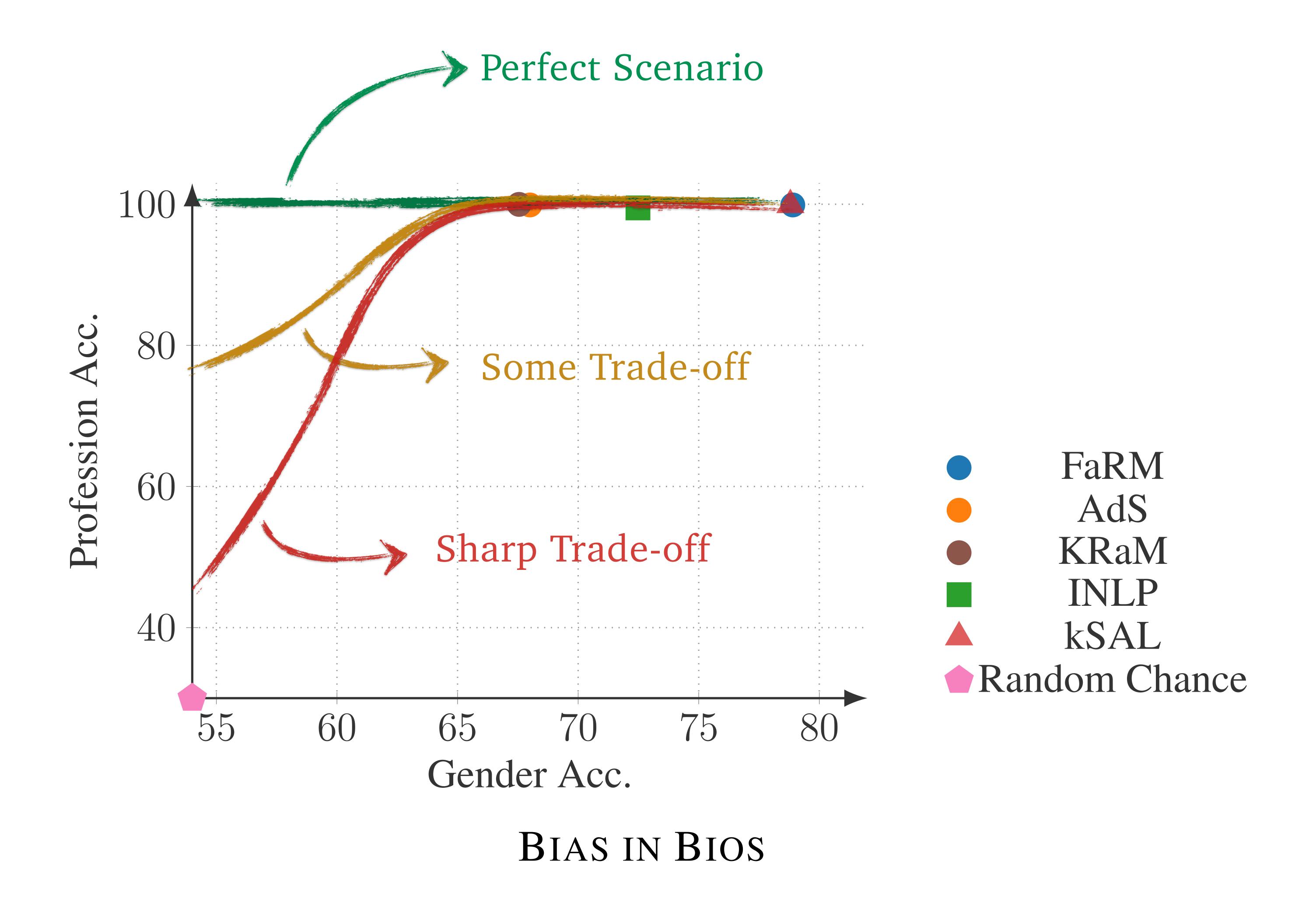
Utility: Profession

What Is The Complete Utility-Erasure Trade-off Profile?

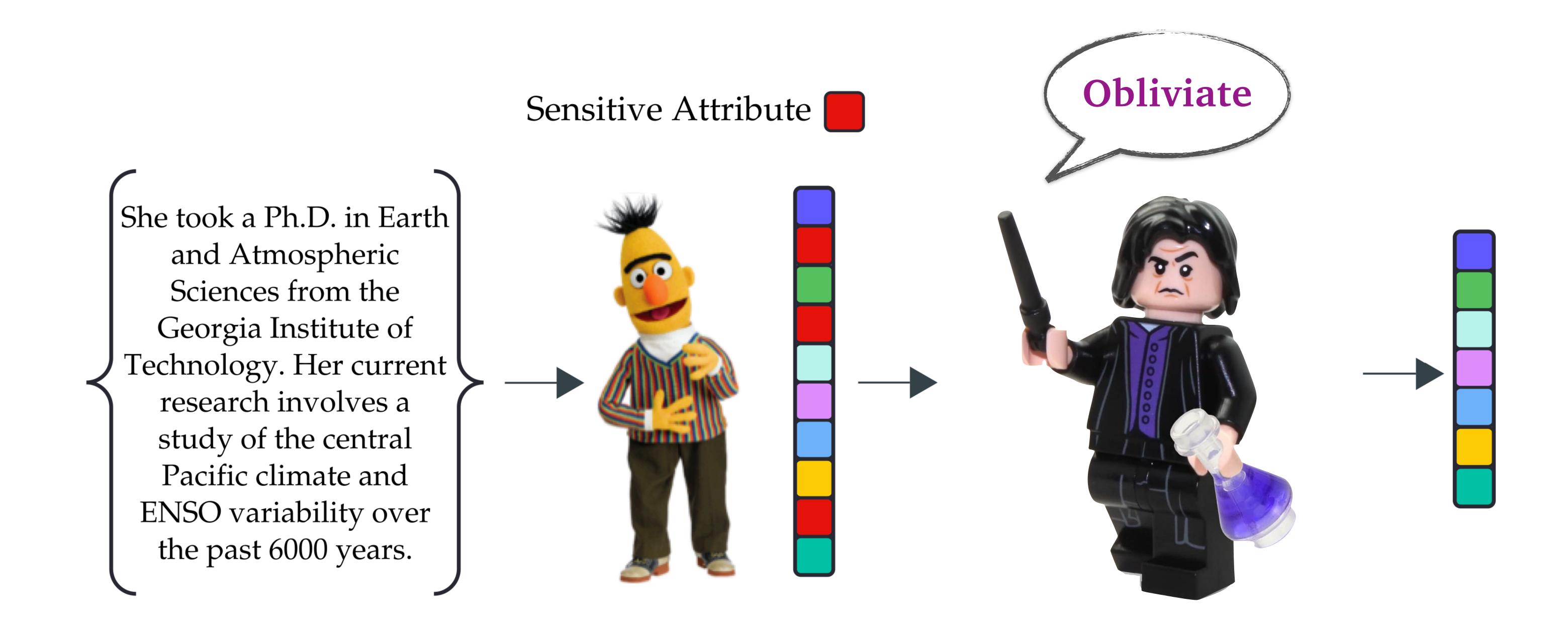


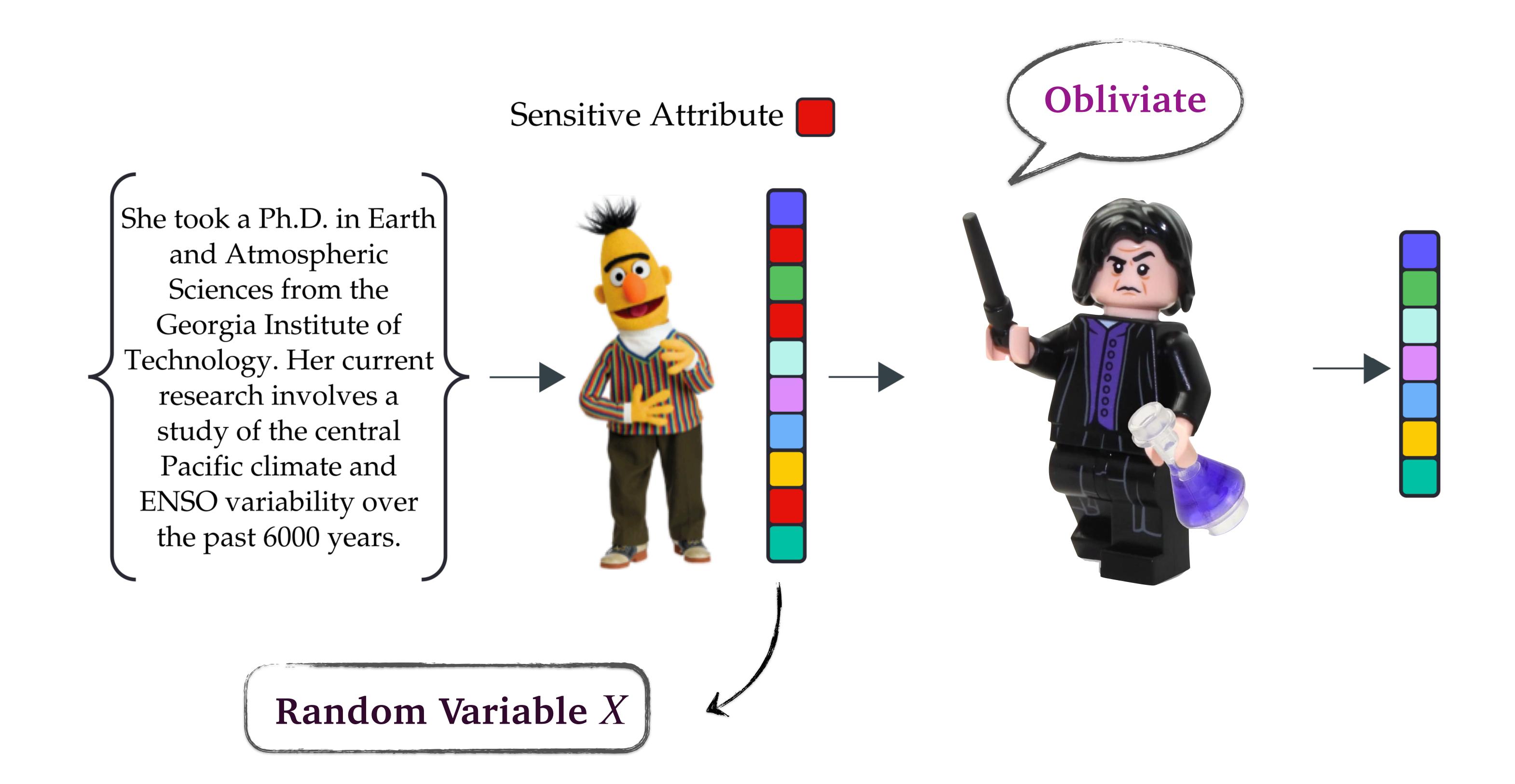
Utility: Profession

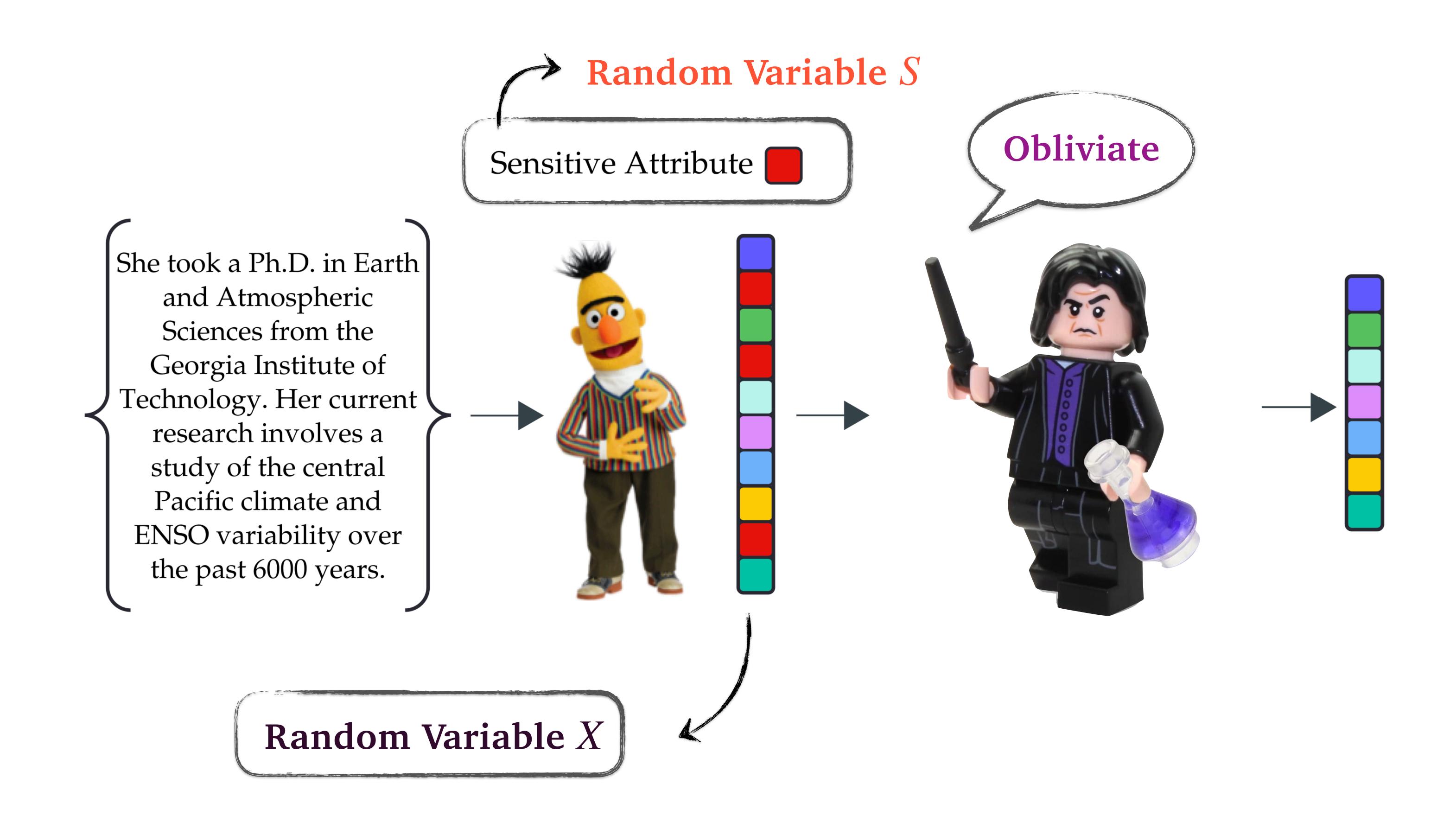
What Is The Complete Utility-Erasure Trade-off Profile?

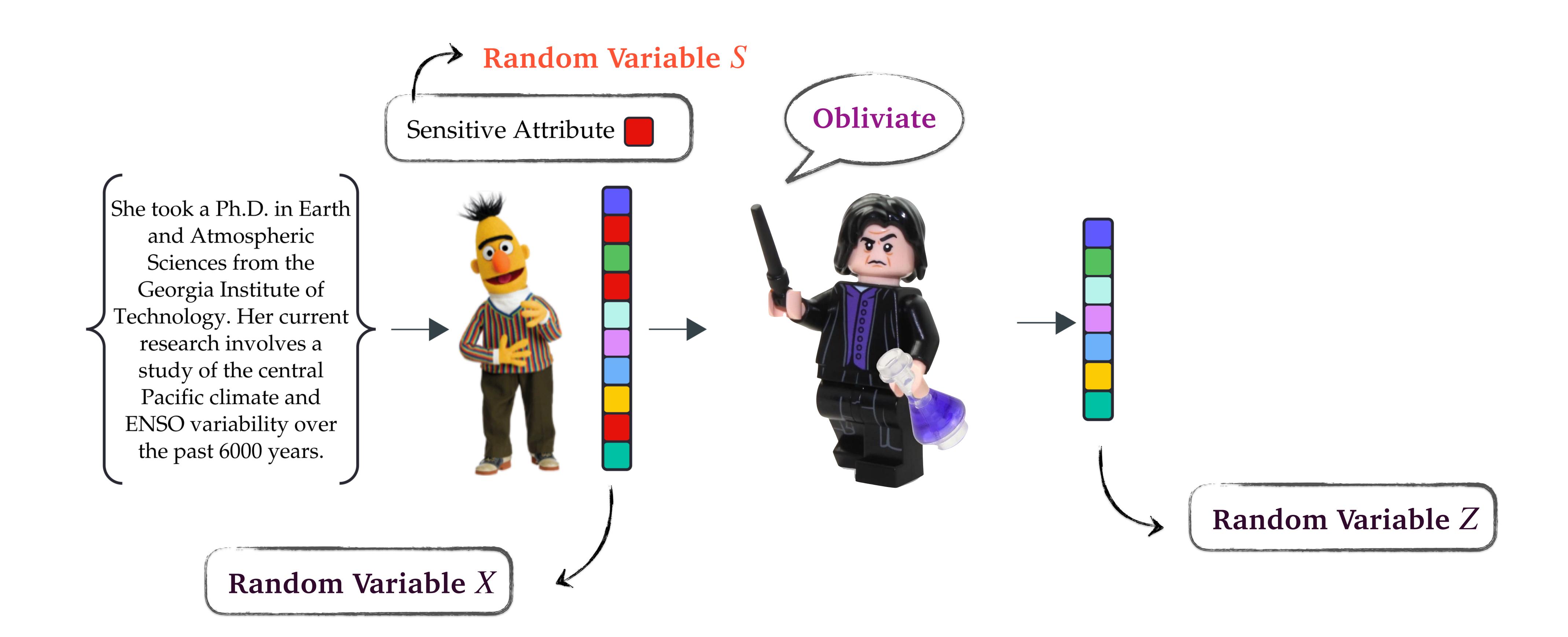


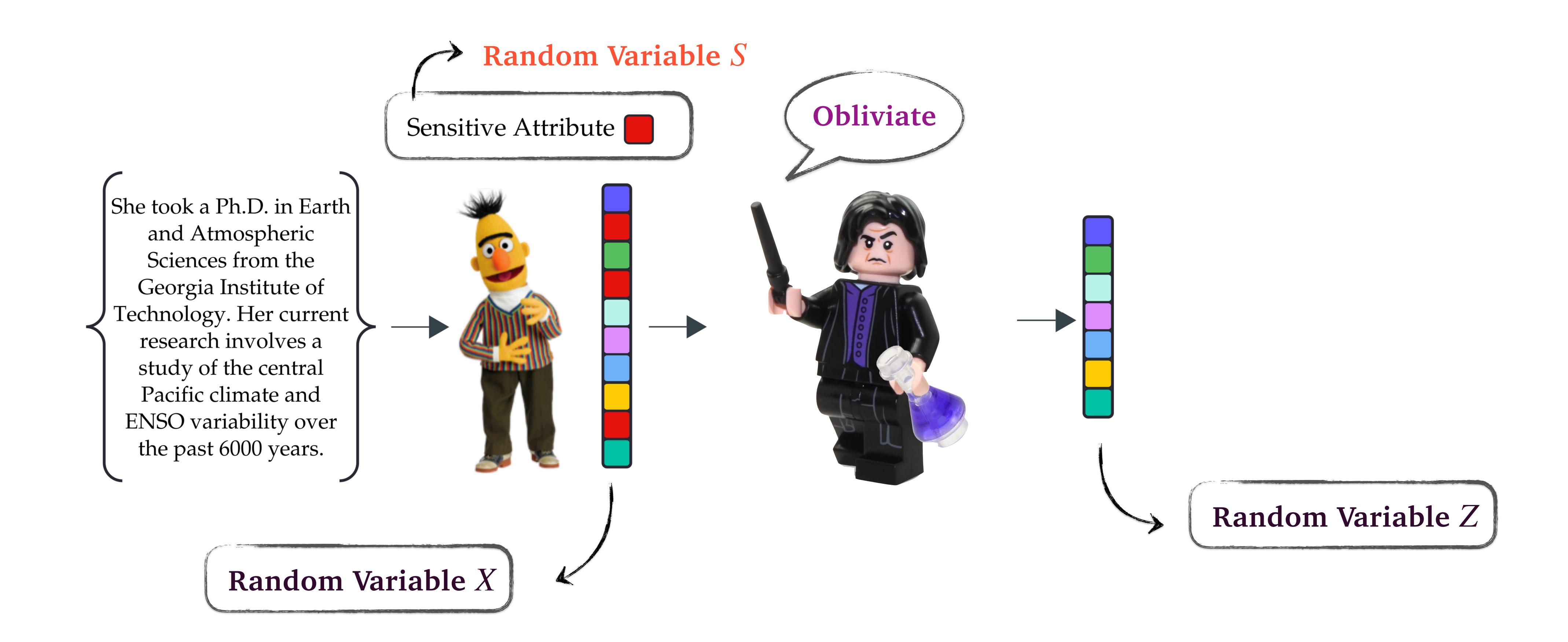
Utility: Profession





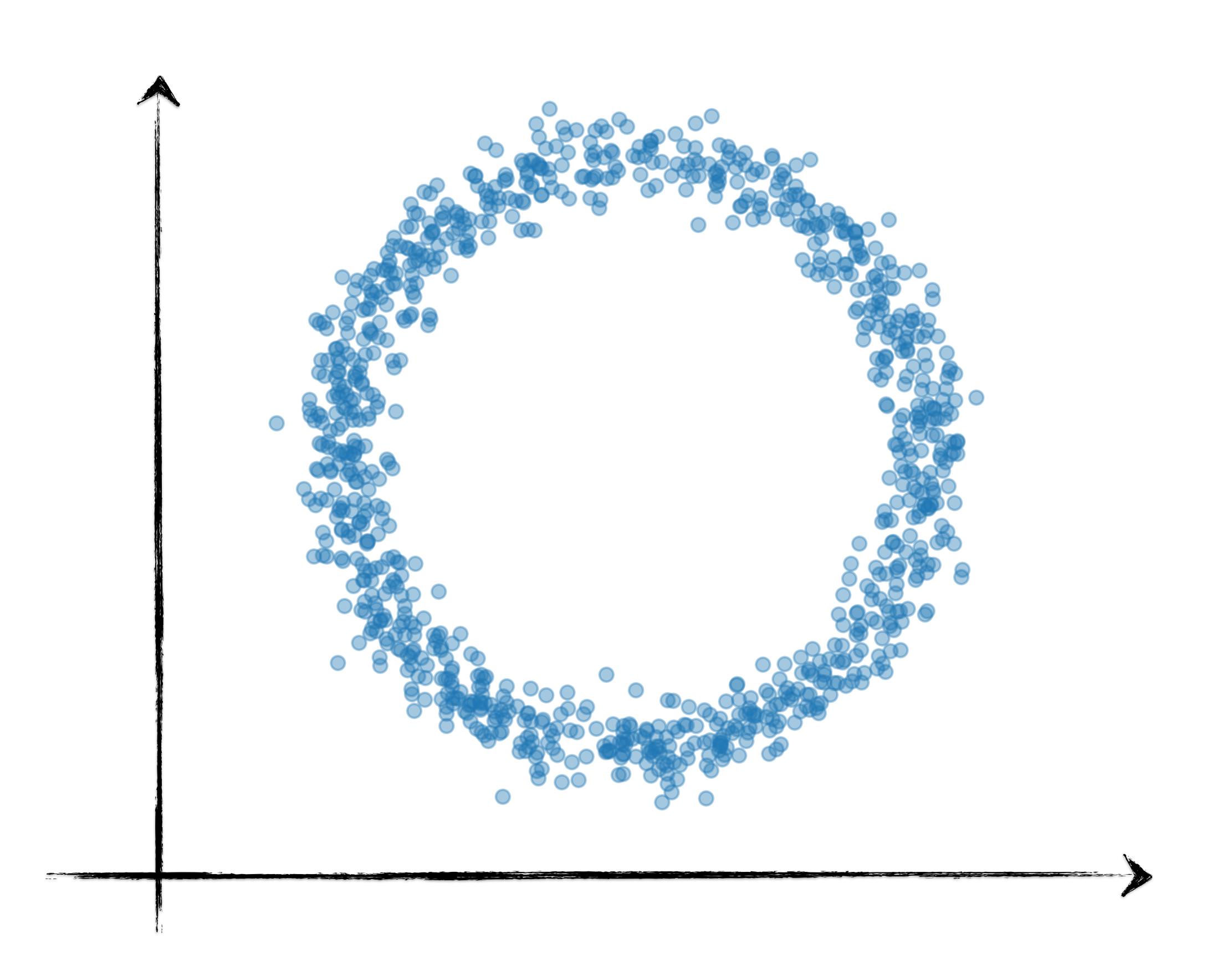




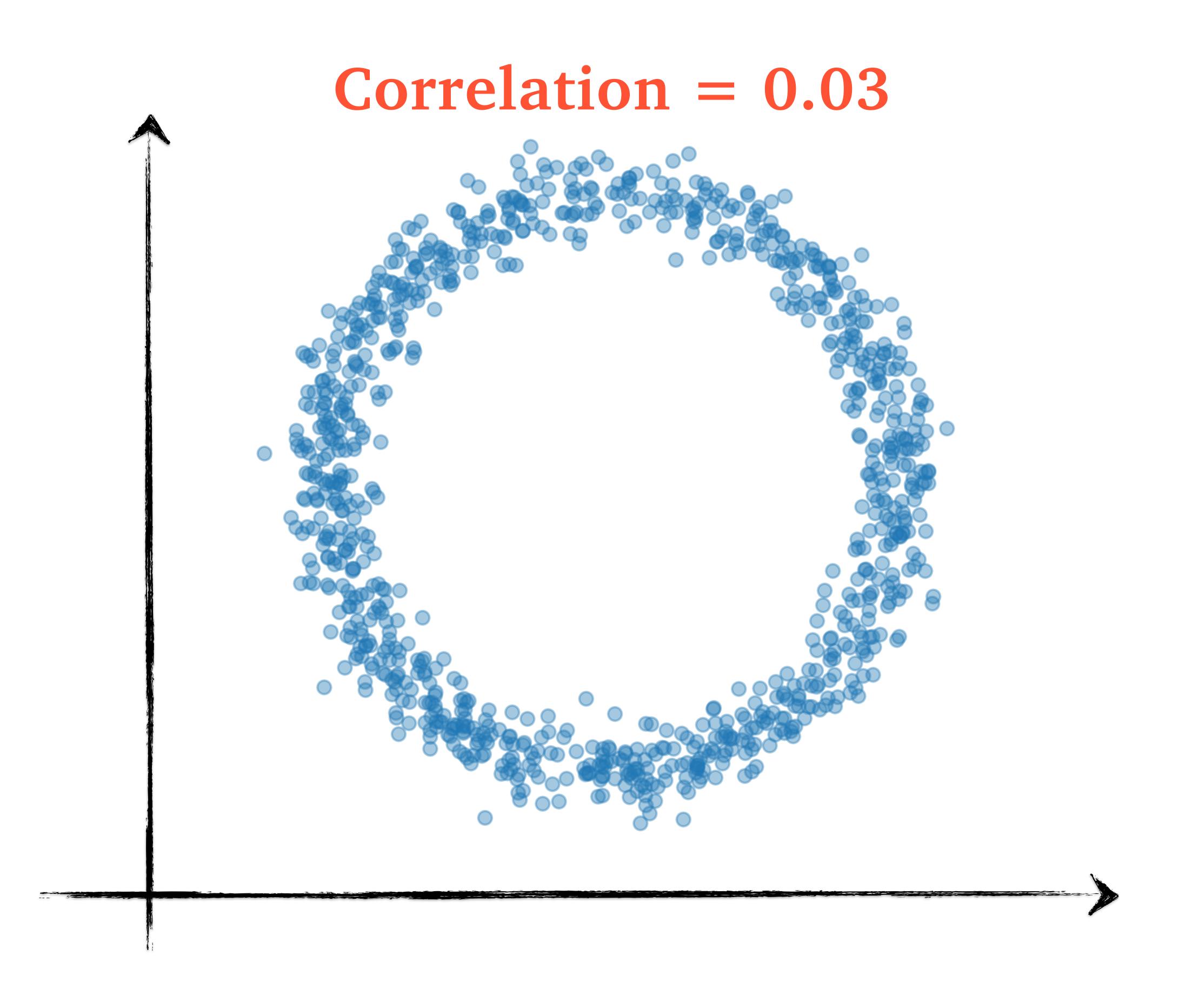


Complete Erasure \iff Z \coprod S

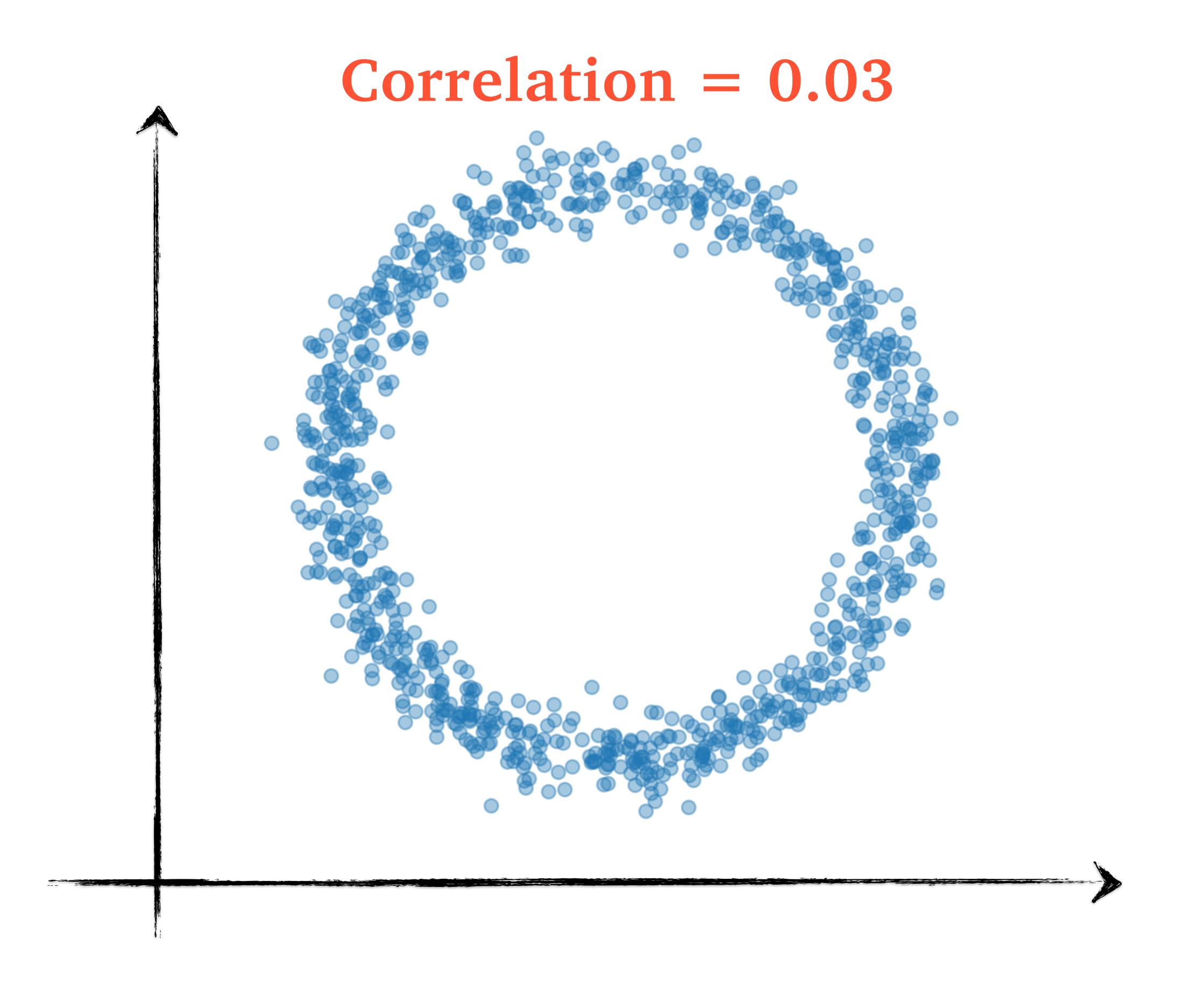
correlation =
$$\frac{\mathbf{Cov}(X, S)}{\sigma_X \sigma_S} = \frac{\mathbb{E}\left[(X - \mu_X)(S - \mu_S)\right]}{\sigma_X \sigma_S}$$



correlation =
$$\frac{\mathbf{Cov}(X, S)}{\sigma_X \sigma_S} = \frac{\mathbb{E}\left[(X - \mu_X)(S - \mu_S)\right]}{\sigma_X \sigma_S}$$

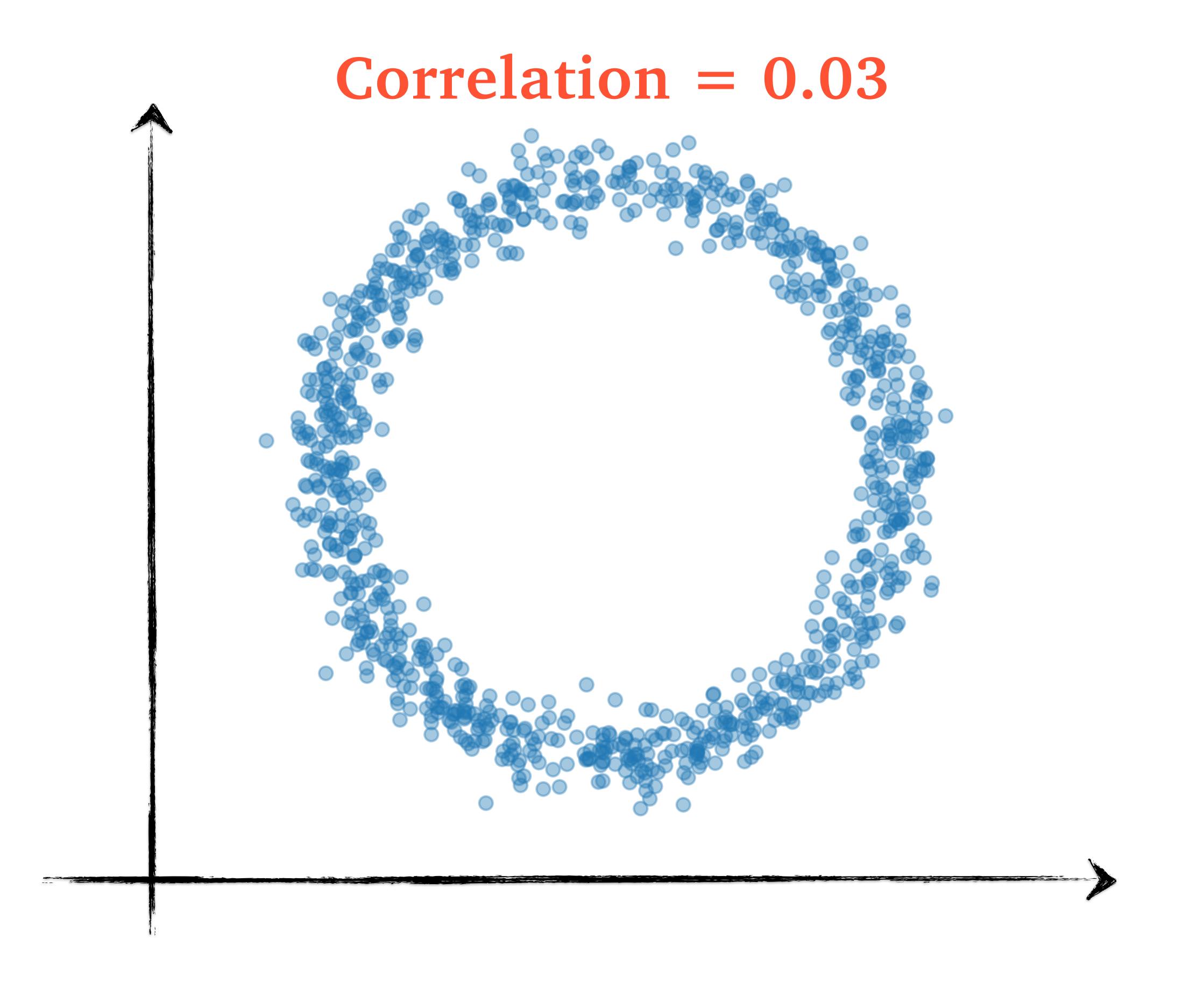


correlation =
$$\frac{\mathbf{Cov}(X, S)}{\sigma_X \sigma_S} = \frac{\mathbb{E}\left[(X - \mu_X)(S - \mu_S)\right]}{\sigma_X \sigma_S}$$



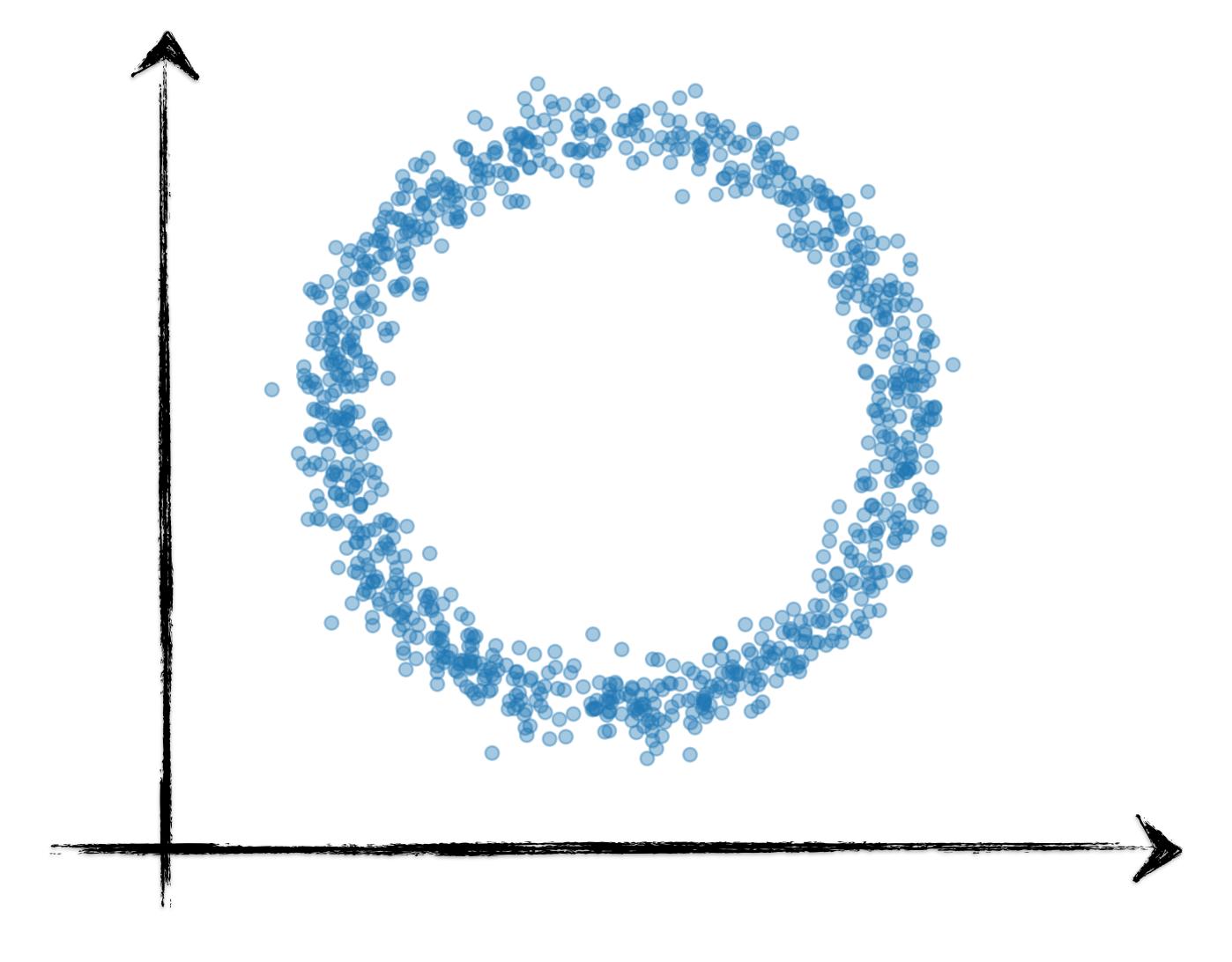
Independence \rightarrow Correlation = 0

correlation =
$$\frac{\mathbf{Cov}(X, S)}{\sigma_X \sigma_S} = \frac{\mathbb{E}\left[(X - \mu_X)(S - \mu_S)\right]}{\sigma_X \sigma_S}$$

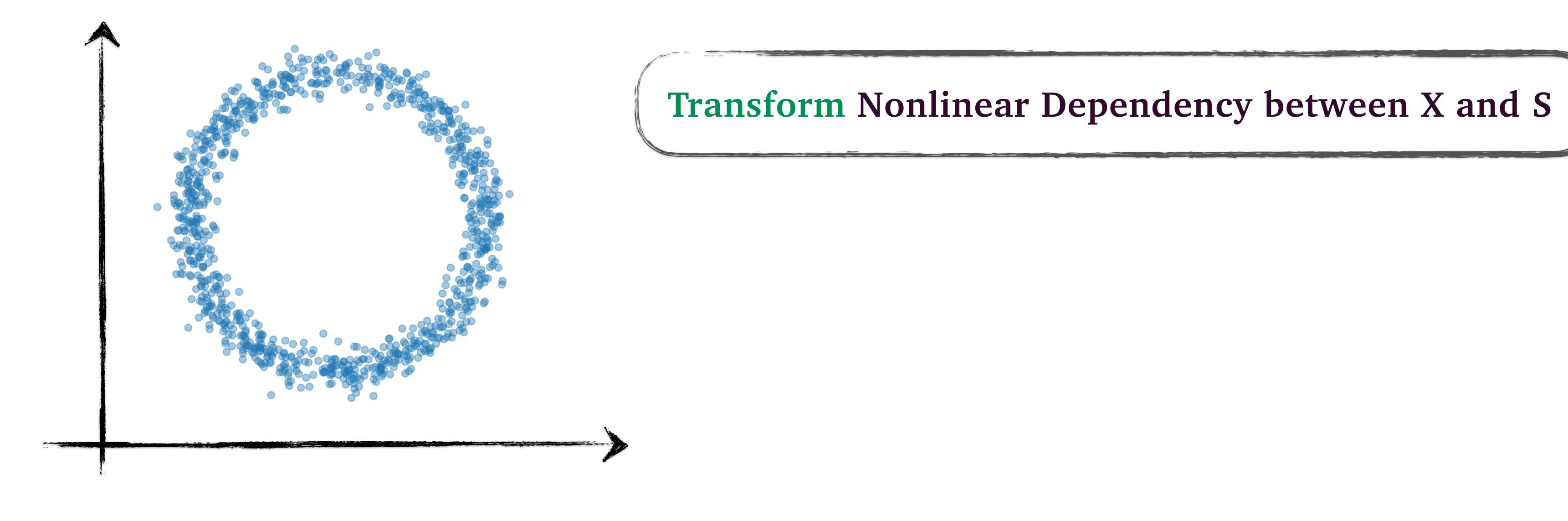


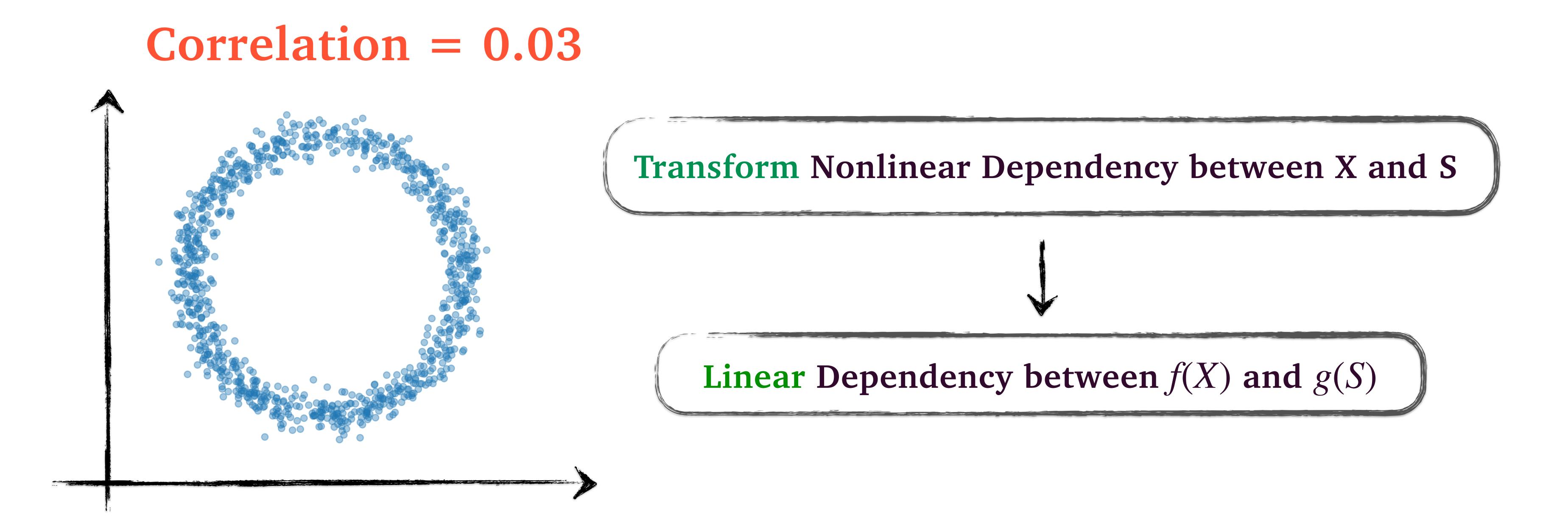
Independence \rightarrow Correlation = 0

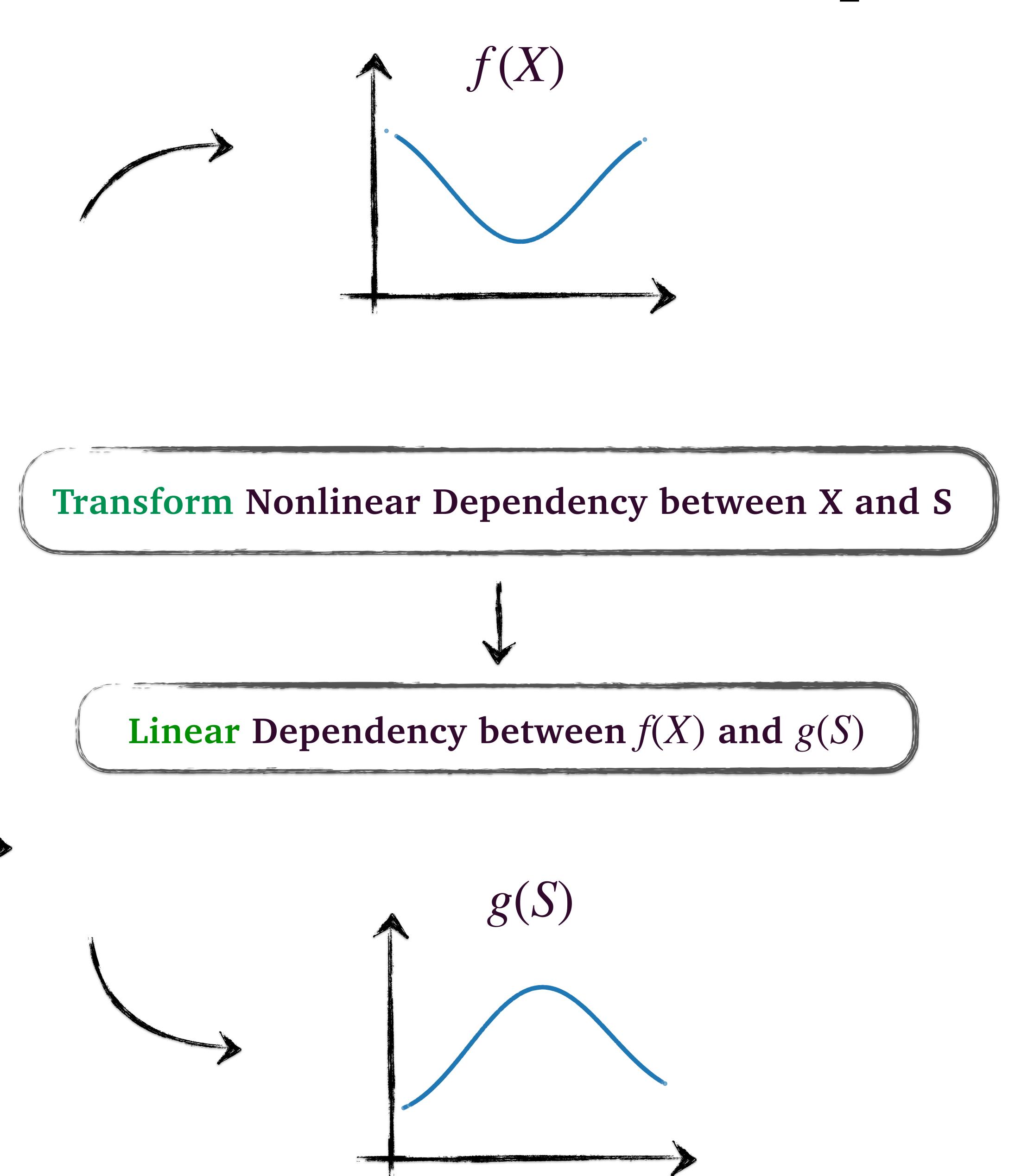
Correlation = $0 \leftrightarrow$ Independence

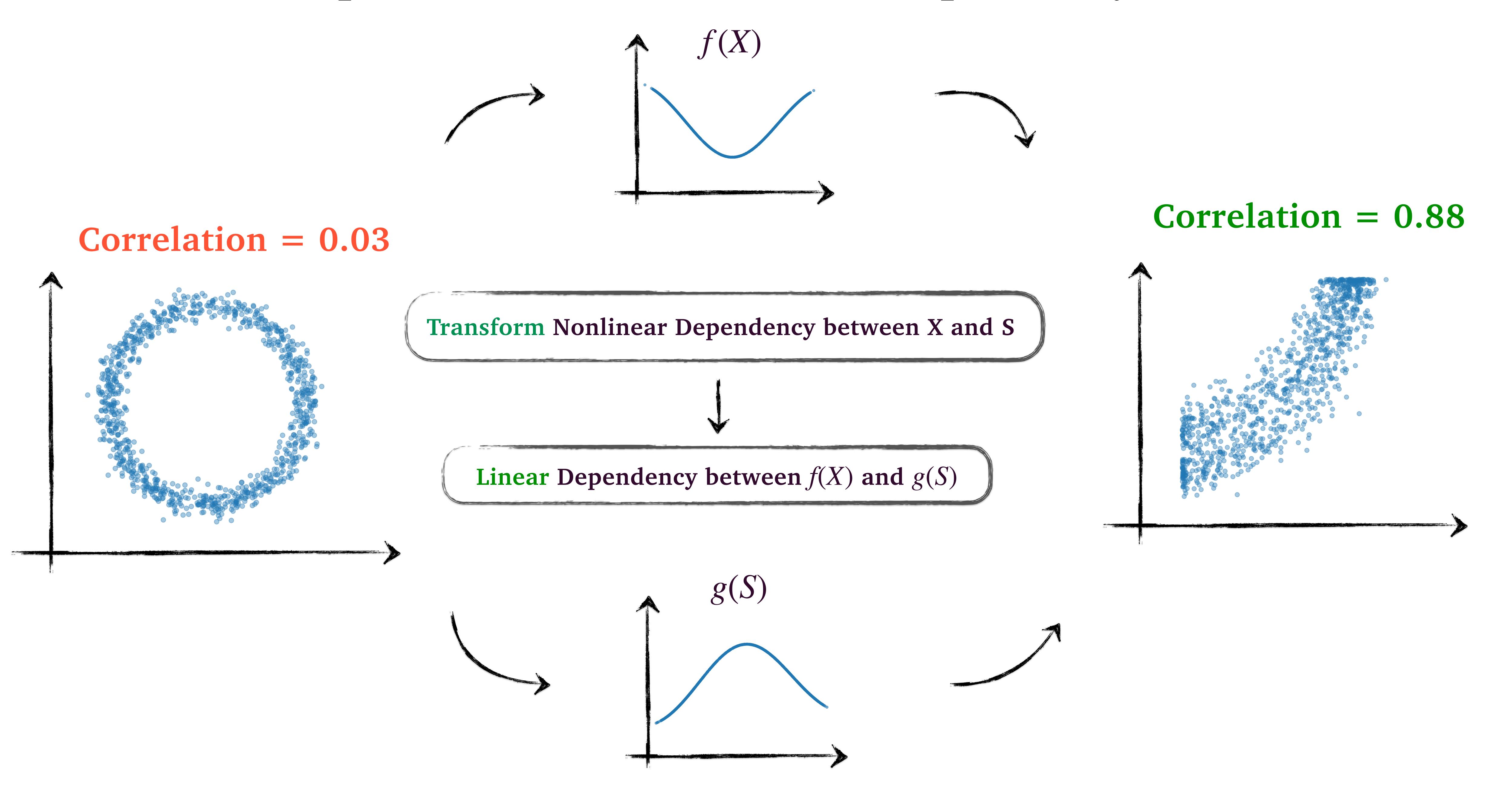


Correlation = 0.03









Let ${\mathcal F}$ and ${\mathcal G}$ be a characteristic RKHS

Let \mathcal{F} and \mathcal{G} be a characteristic RKHS

$$\sup_{g \in \mathcal{G}} \sup_{f \in \mathcal{F}} \mathbf{Cov}(f(X), g(S)) = \langle g, \mathbb{C}\mathbf{ov}f \rangle_{\mathcal{G}} \qquad s.t \qquad ||f||_{\mathcal{F}} = ||g||_{\mathcal{G}} = 1$$

$$s.t$$
 $||f||$

$$\|f\|_{\mathscr{F}} = \|g\|_{\mathscr{G}} = 1$$

Let \mathcal{F} and \mathcal{G} be a characteristic RKHS

$$\sup_{g \in \mathcal{G}} \sup_{f \in \mathcal{F}} \mathbf{Cov}(f(X), g(S)) = \langle g, \mathbb{C}\mathbf{ov}f \rangle_{\mathcal{G}} \qquad s.t \qquad ||f||_{\mathcal{F}} = ||g||_{\mathcal{G}} = 1$$

 $\|\mathbb{C}ov\|_{HS}^2$ Hilbert-Schmidt Norm of Covariance Operator Indicates Existence of Such Functions

Let ${\mathcal F}$ and ${\mathcal G}$ be a characteristic RKHS

$$\sup_{g \in \mathcal{G}} \sup_{f \in \mathcal{F}} \mathbf{Cov}(f(X), g(S)) = \langle g, \mathbb{C}\mathbf{ov}f \rangle_{\mathcal{G}} \qquad s.t \qquad ||f||_{\mathcal{F}} = ||g||_{\mathcal{G}} = 1$$

 $\|\mathbb{C}ov\|_{HS}^2$ Hilbert-Schmidt Norm of Covariance Operator Indicates Existence of Such Functions

 $\|\mathbb{C}\text{ov}\|_{HS}^2 = \mathbf{0} \iff \text{Statistical Independence}$

Let \mathcal{F} and \mathcal{G} be a characteristic RKHS

$$\sup_{g \in \mathcal{G}} \sup_{f \in \mathcal{F}} \mathbf{Cov}(f(X), g(S)) = \langle g, \mathbb{C}\mathbf{ov}f \rangle_{\mathcal{G}} \qquad s.t \qquad ||f||_{\mathcal{F}} = ||g||_{\mathcal{G}} = 1$$

 $\|\mathbb{C}ov\|_{HS}^2$ Hilbert-Schmidt Norm of Covariance Operator Indicates Existence of Such Functions

$$\|\mathbb{C}\text{ov}\|_{HS}^2 = \mathbf{0} \iff \text{Statistical Independence}$$

The Correct Proxy To Impose Statistical Independence

How Do We Formulate Erasure Using Statistical Independence?

$$Z_{\theta} = \varepsilon(X; \theta) \rightarrow$$

How Do We Formulate Erasure Using Statistical Independence?

$$Z_{\theta} = \varepsilon(X; \theta) \rightarrow$$

 $Z_{\theta} \rightarrow \text{Random Variable After Erasure}$

 $S \rightarrow Random Variable Represent Unwanted Label$

 $Y \rightarrow Random Variable Represent Utility Label$

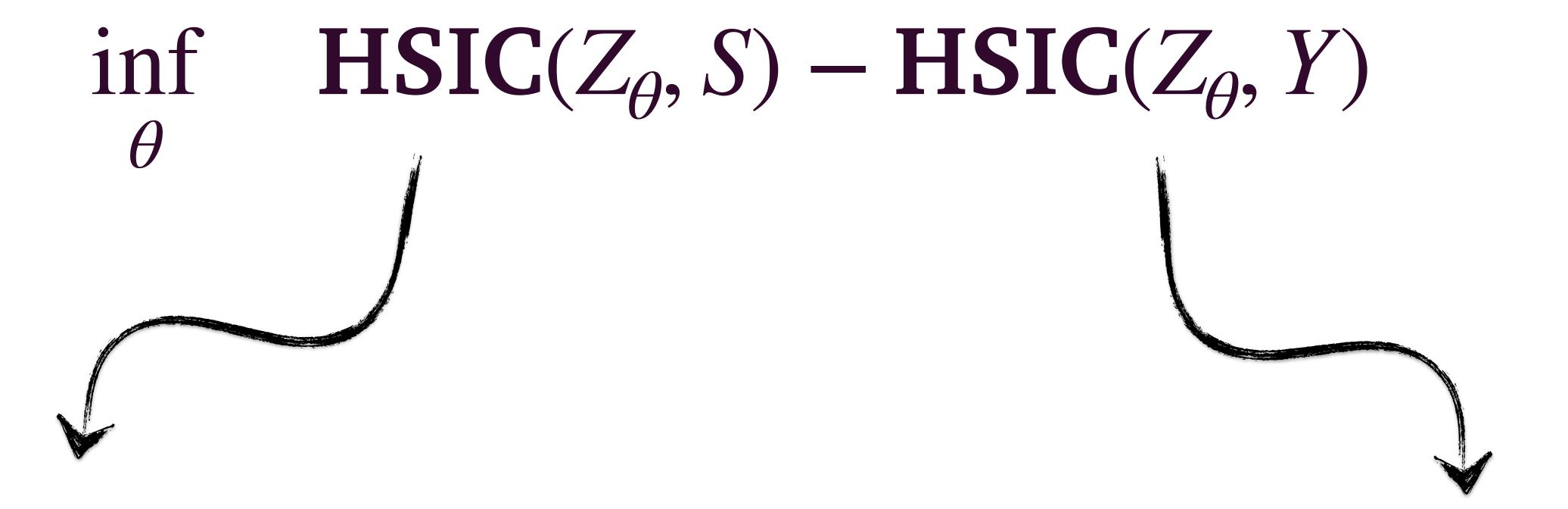
How Do We Formulate Erasure Using Statistical Independence?

$$Z_{\theta} = \varepsilon(X; \theta) \longrightarrow$$

 $Z_{\theta} \rightarrow \text{Random Variable After Erasure}$

 $S \rightarrow Random Variable Represent Unwanted Label$

 $Y \rightarrow \text{Random Variable Represent Utility Label}$



Minimize Statistical Dependency

A Proxy to Preserve Utility Information

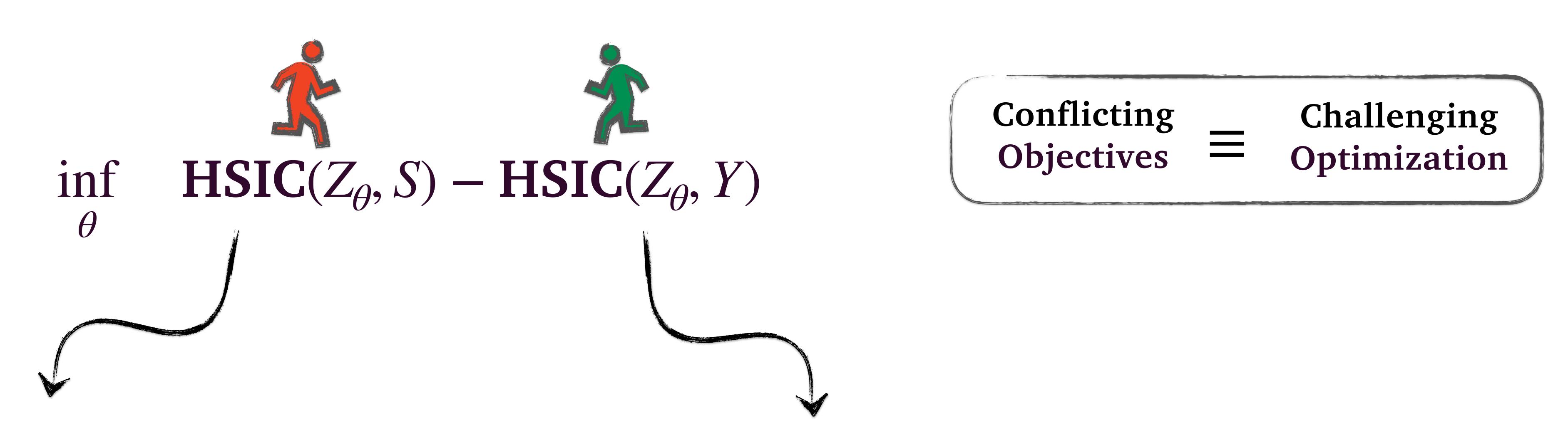
How Do We Formulate Erasure Using Statistical Independence?

$$Z_{\theta} = \varepsilon(X; \theta) \rightarrow$$

 $Z_{\rho} \rightarrow \text{Random Variable After Erasure}$

S — Random Variable Represent Unwanted Label

 $Y \rightarrow \text{Random Variable Represent Utility Label}$



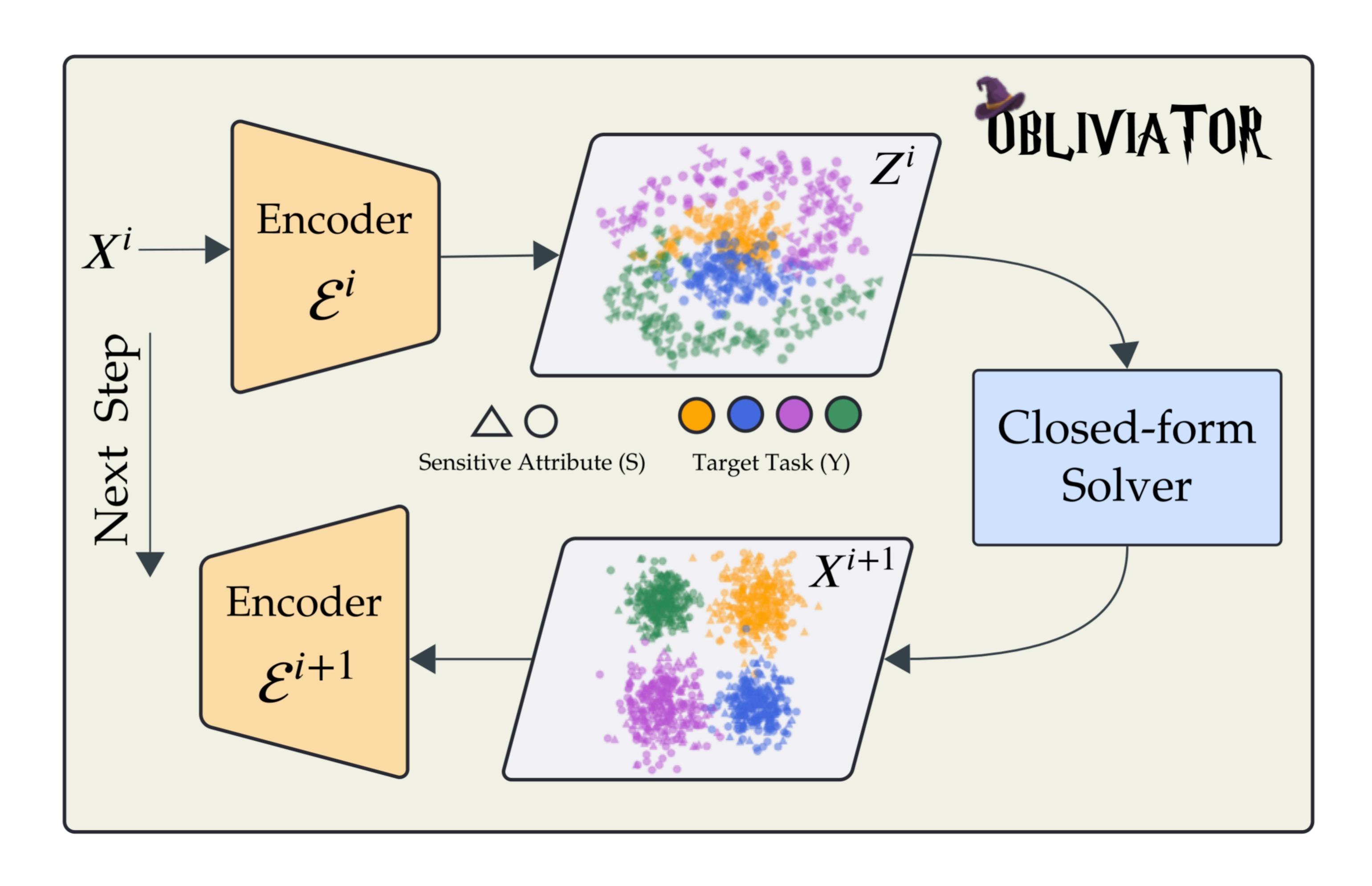
Minimize Statistical Dependency

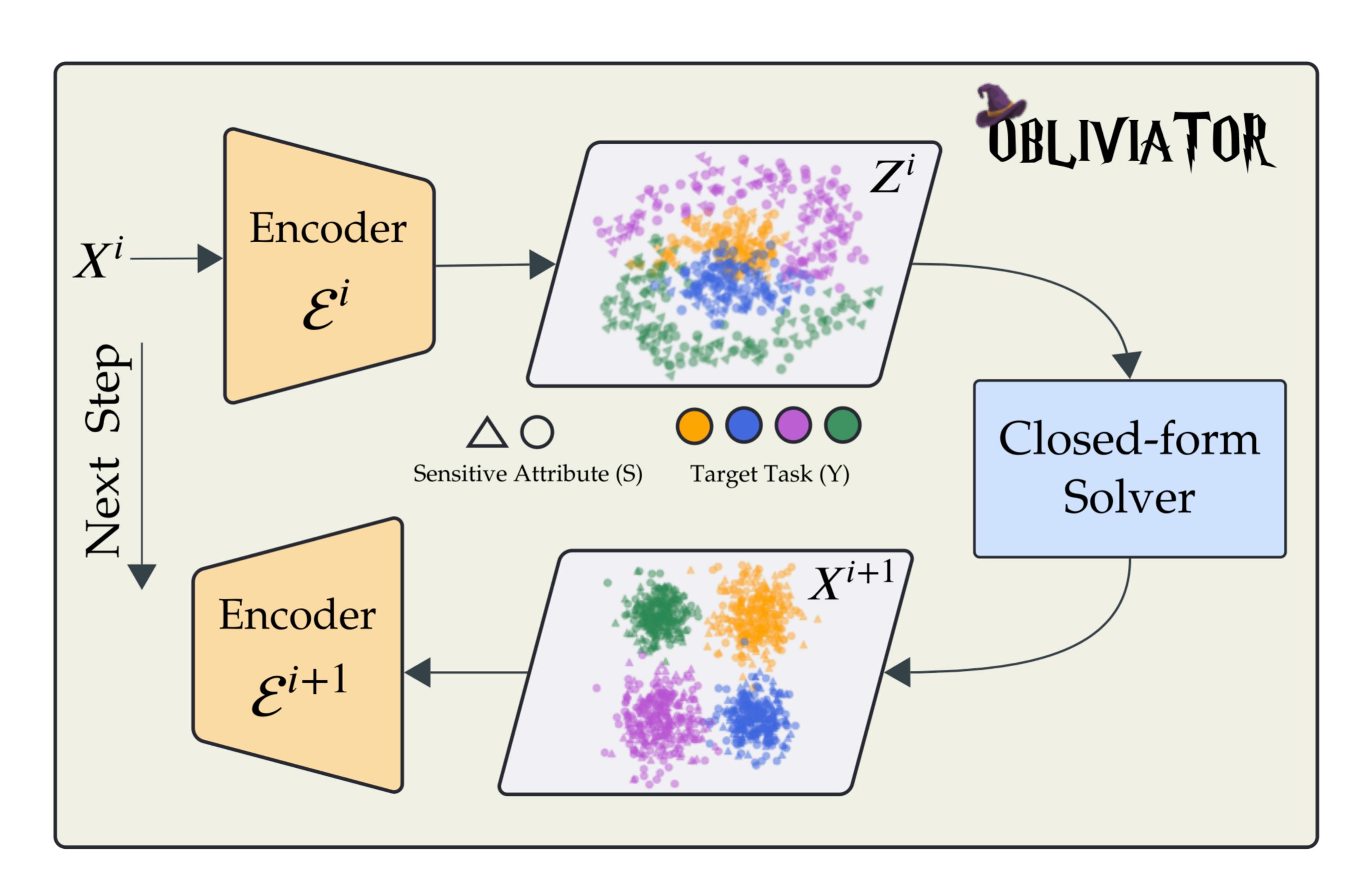
A Proxy to Preserve Utility Information

Single-Shot Optimization Leads to Poor Solutions

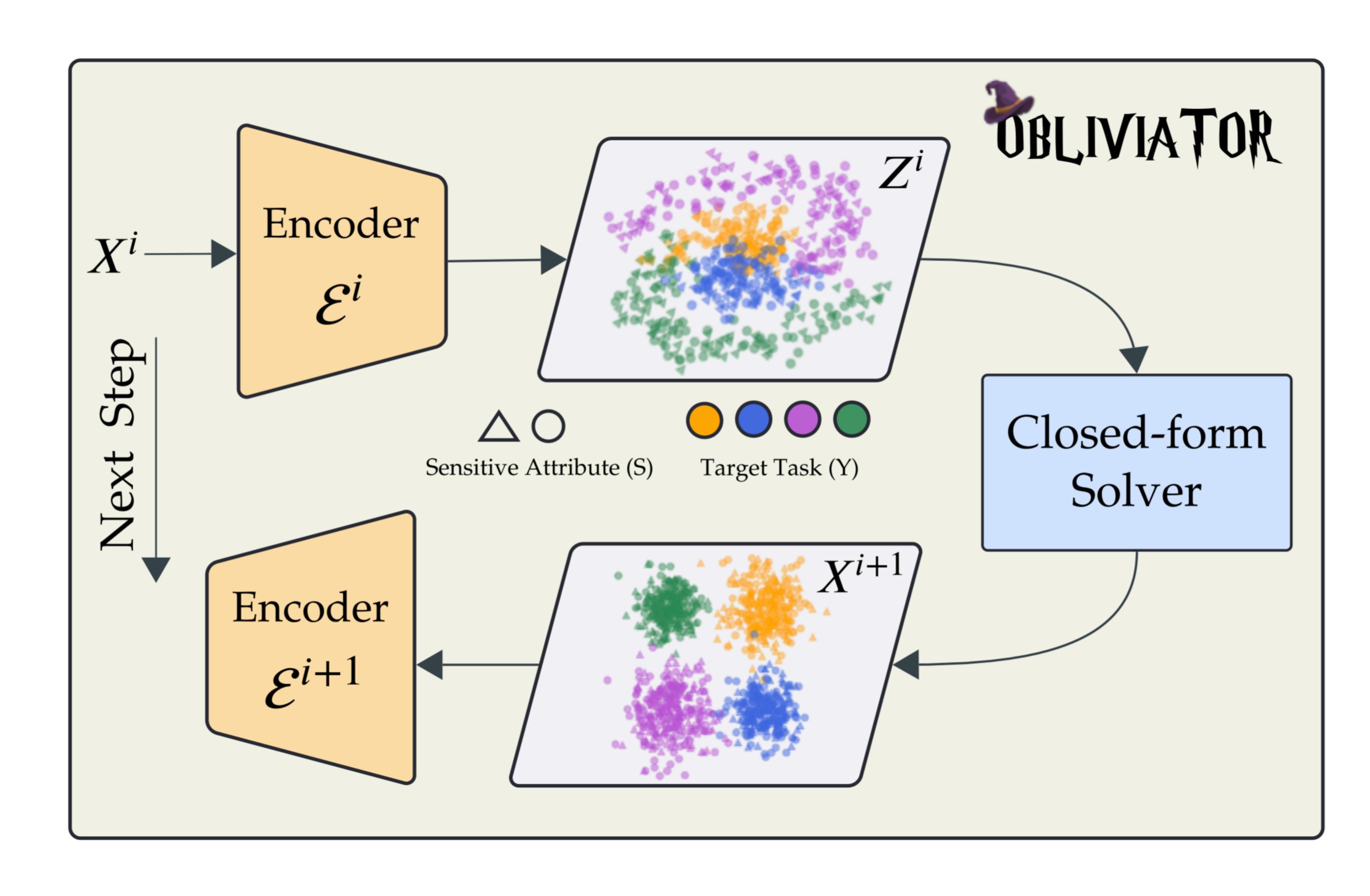
Single-Shot Optimization Leads to Poor Solutions

To Make Erasure Smoother We Propose an Iterative approach





Step One



Step One

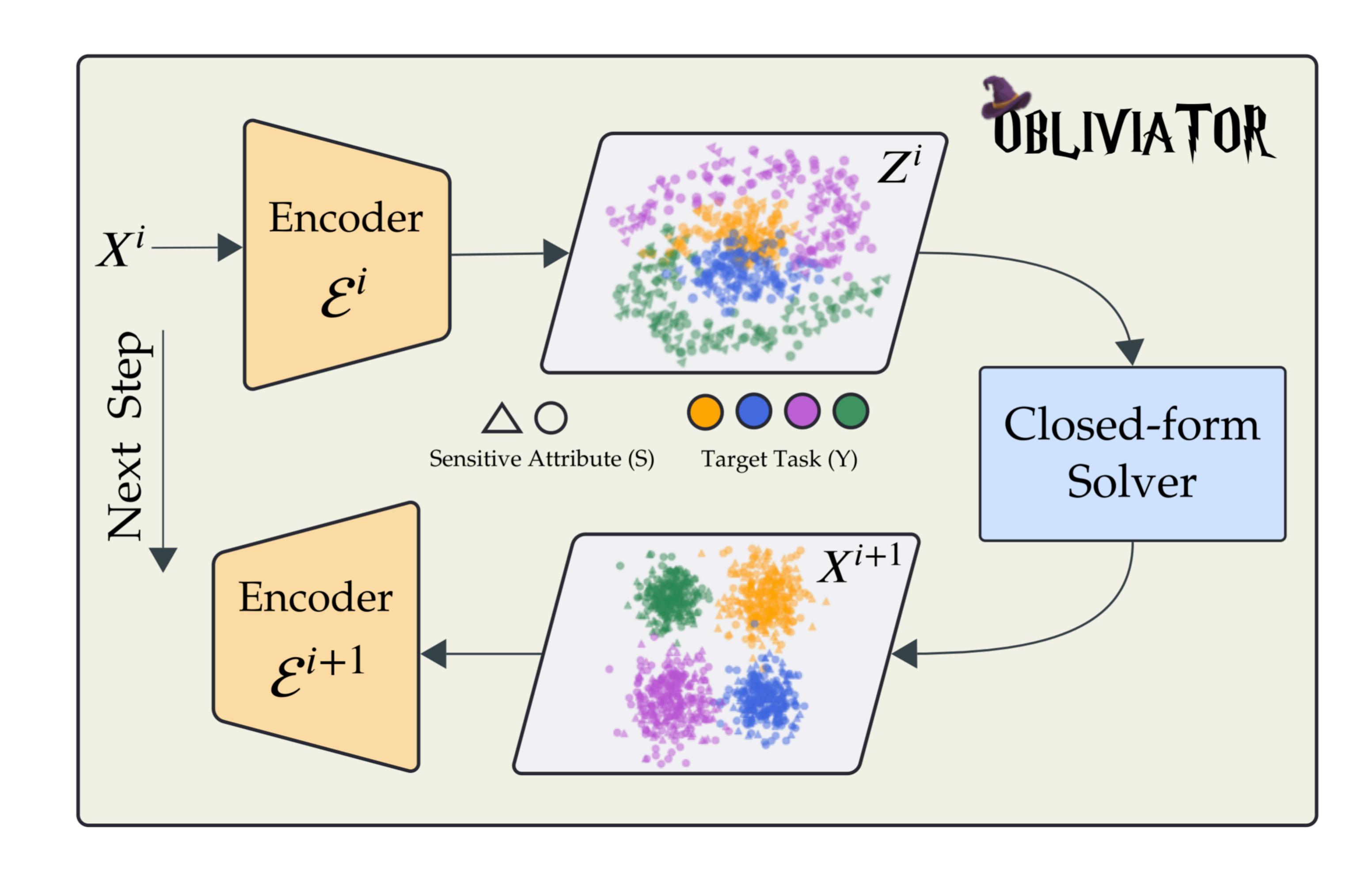
Erase and Preserve via guarding function $Z_{\theta}^{i} = \varepsilon^{i}(X^{i}; \theta^{i})$



Step One

Erase and Preserve via guarding function $Z_{\theta}^{i} = \varepsilon^{i}(X^{i}; \theta^{i})$

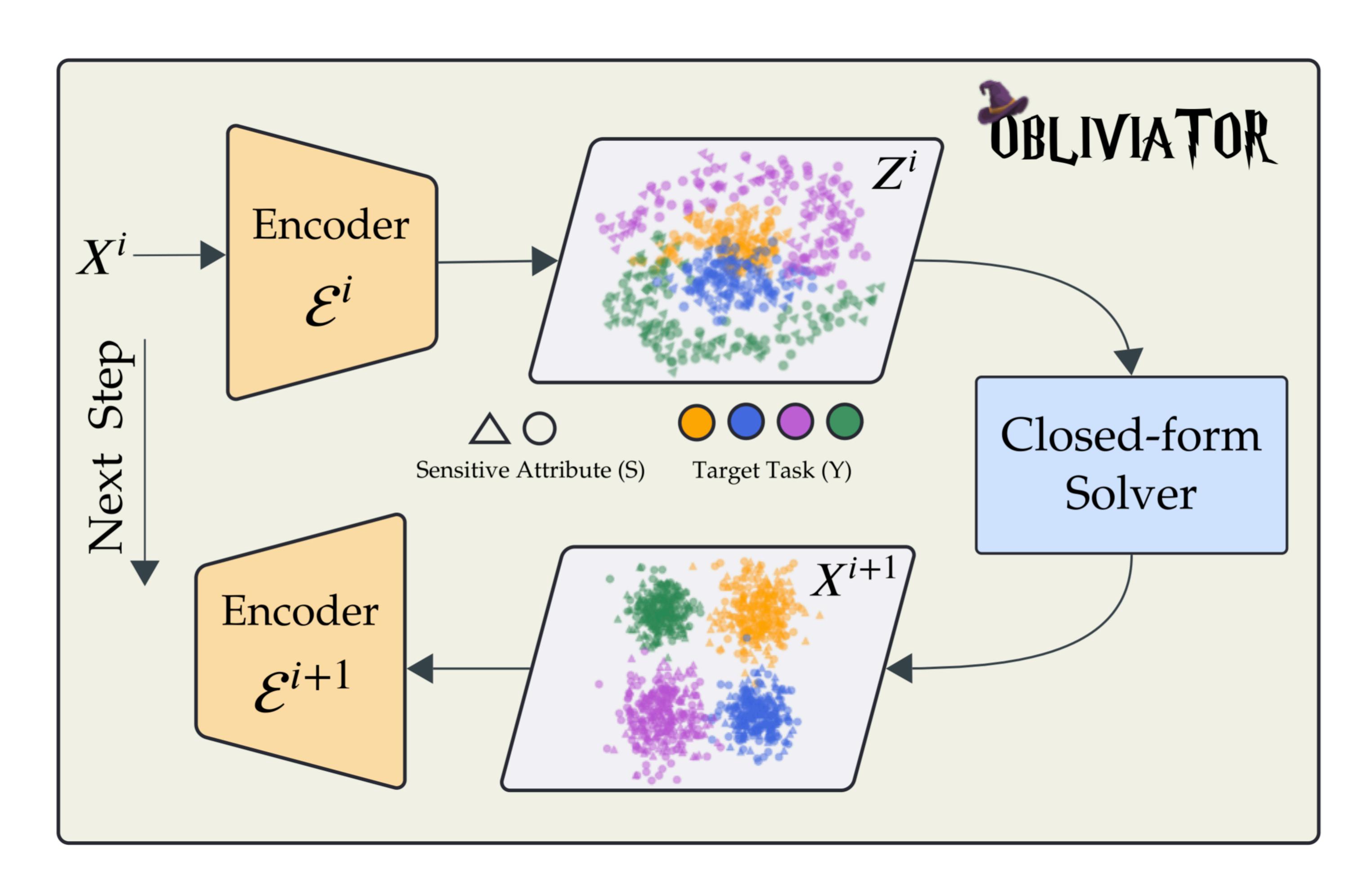
$$\inf_{\theta} \quad \text{HSIC}(Z_{\theta}, S) - \left[\text{HSIC}(Z_{\theta}^{i}, Y) + \text{HSIC}(Z_{\theta}^{i}, X) + \text{HSIC}(Z_{\theta}^{i}, X^{i}) \right]$$



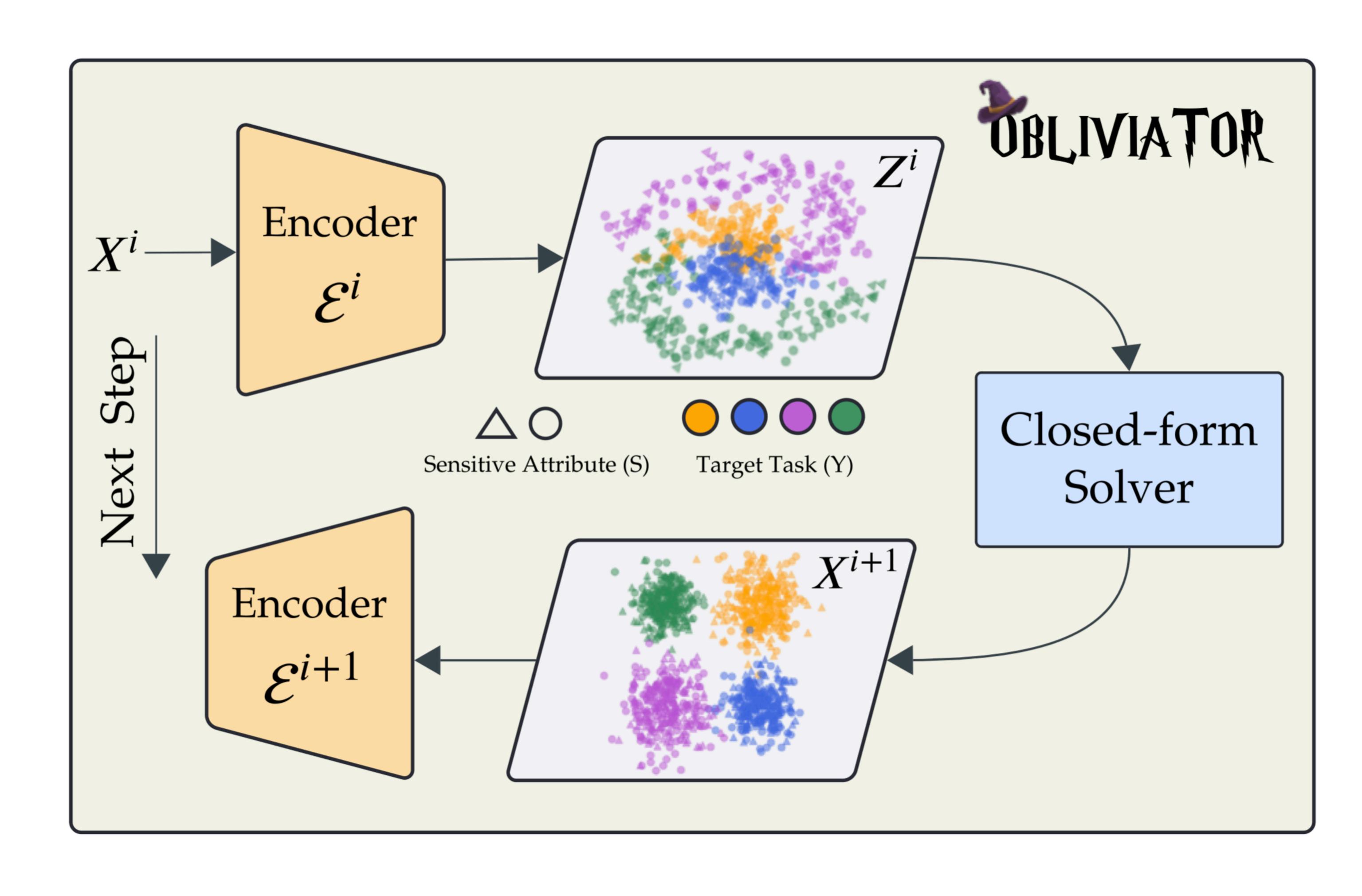
Step One

Erase and Preserve via guarding function $Z_{\theta}^{i} = \varepsilon^{i}(X^{i}; \theta^{i})$

$$\inf_{\theta} \quad \text{HSIC}(Z_{\theta}, S) - \left[\text{HSIC}(Z_{\theta}^{i}, Y) + \text{HSIC}(Z_{\theta}^{i}, X) + \text{HSIC}(Z_{\theta}^{i}, X^{i}) \right]$$
More Information-Preserving Loss



Step Two



Step Two

Separate Useful Information from Unwanted Concepts:

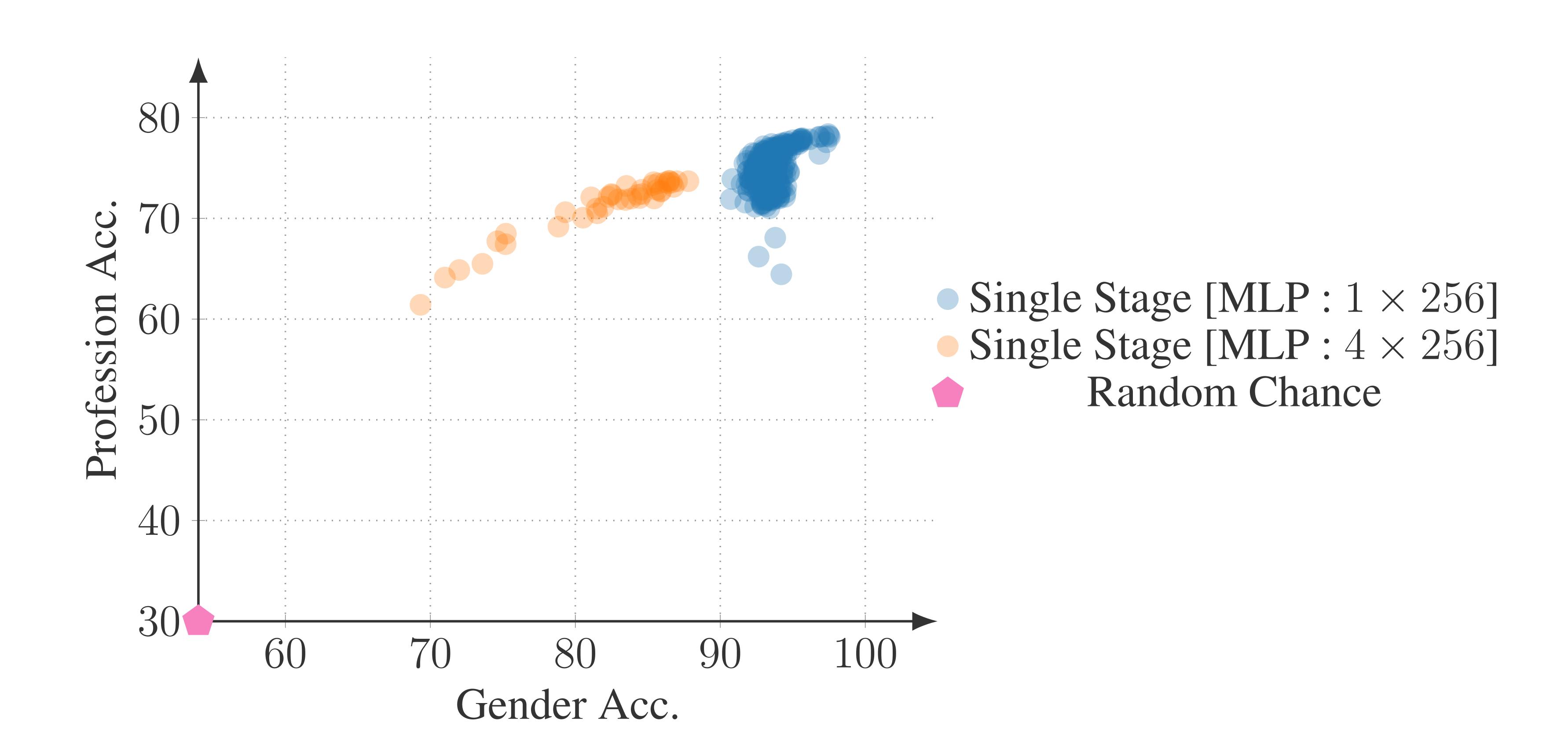


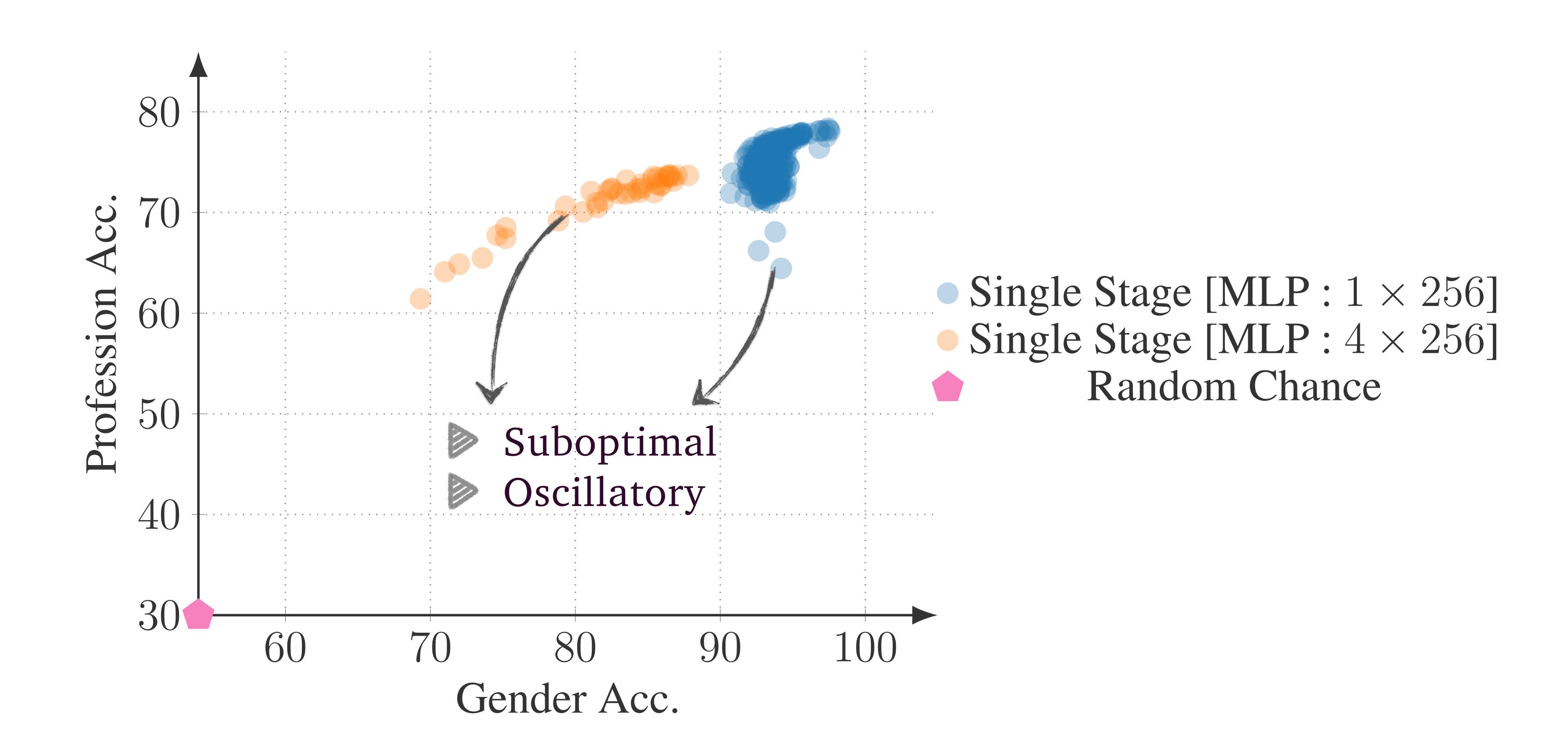
Step Two

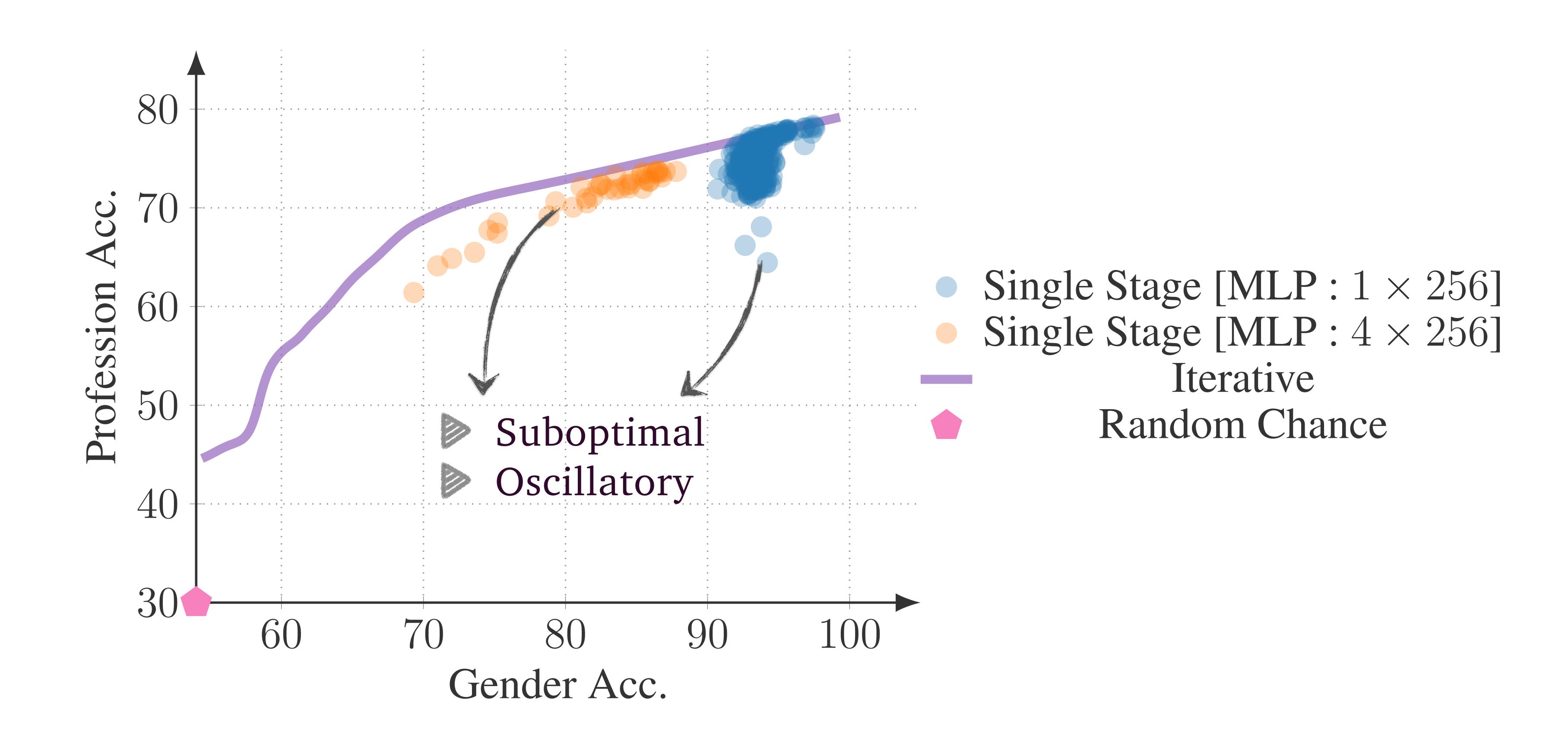
Separate Useful Information from Unwanted Concepts:

$$\sup_{\{g_a \in \mathcal{G}_a\}} \sup_{f \in \mathcal{F}} \mathbf{Cov}^2(f(Z_\theta^i), g_y(Y)) + \mathbf{Cov}^2(f(Z_\theta^i), g_{x^i}(X^i)) + \mathbf{Cov}^2(f(Z_\theta^i), g_x(X))$$

$$s.t \quad \sup_{g_s \in \mathcal{G}_s} \mathbf{Cov}(f(Z_\theta^i), g_s(S)) = 0 \quad ||f||_{\mathcal{F}} = ||g_a||_{\mathcal{G}_a} = 1$$

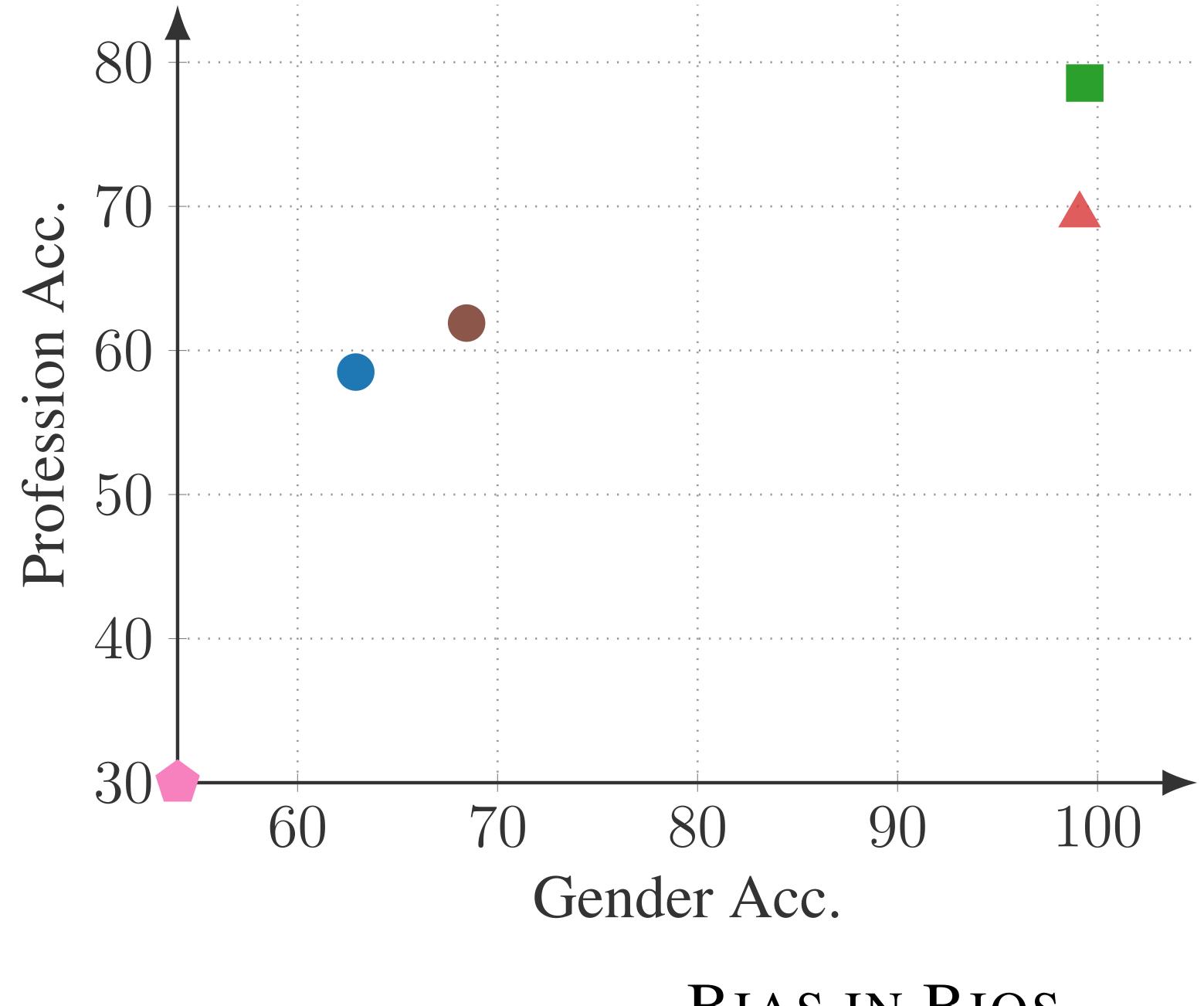






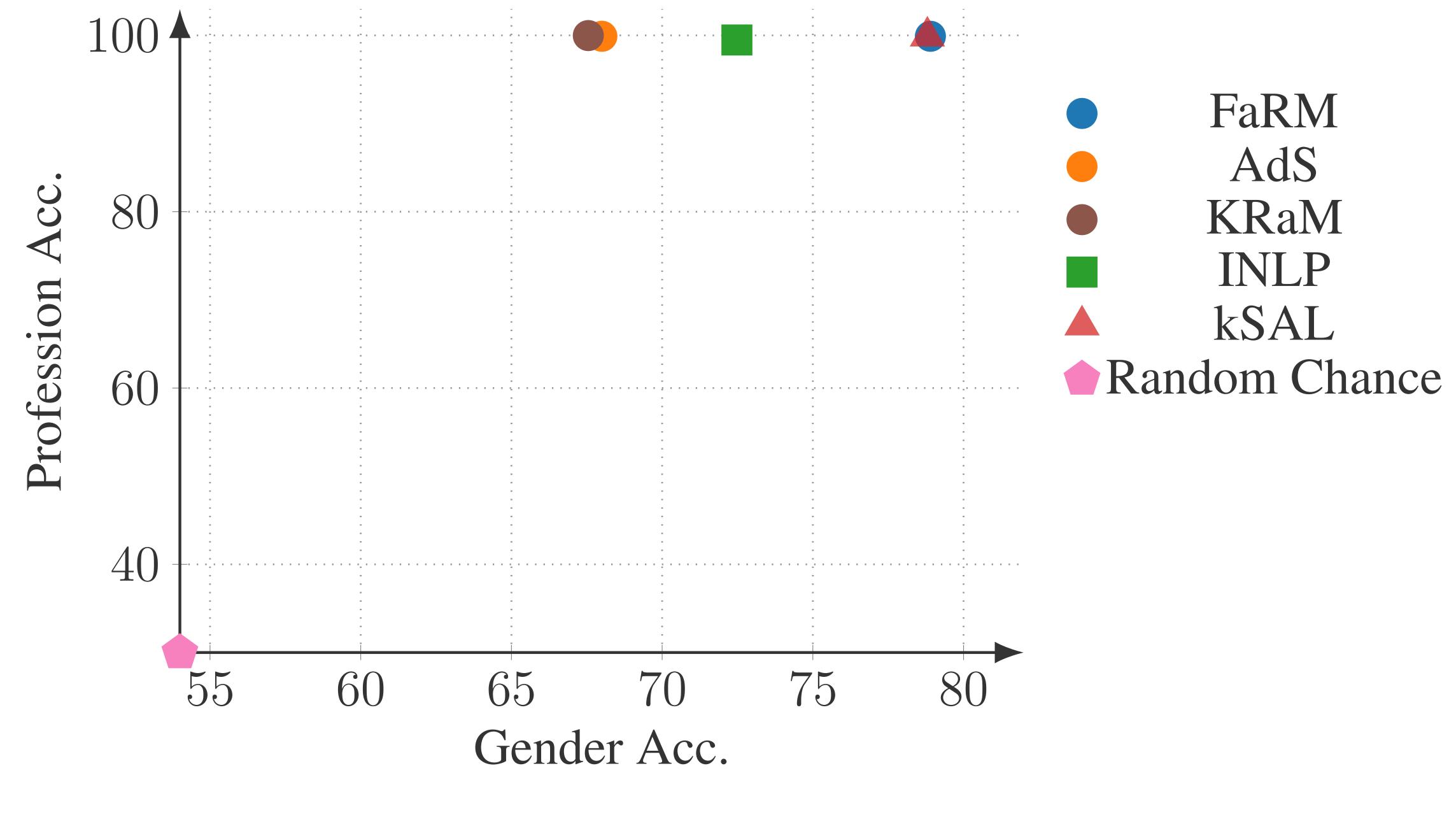
What does Obliviato	r Reveal about	Concept Eras	ure?

Obliviator Reveals: Achieving Nonlinear Guardedness



BIAS IN BIOS

Representation: Frozen

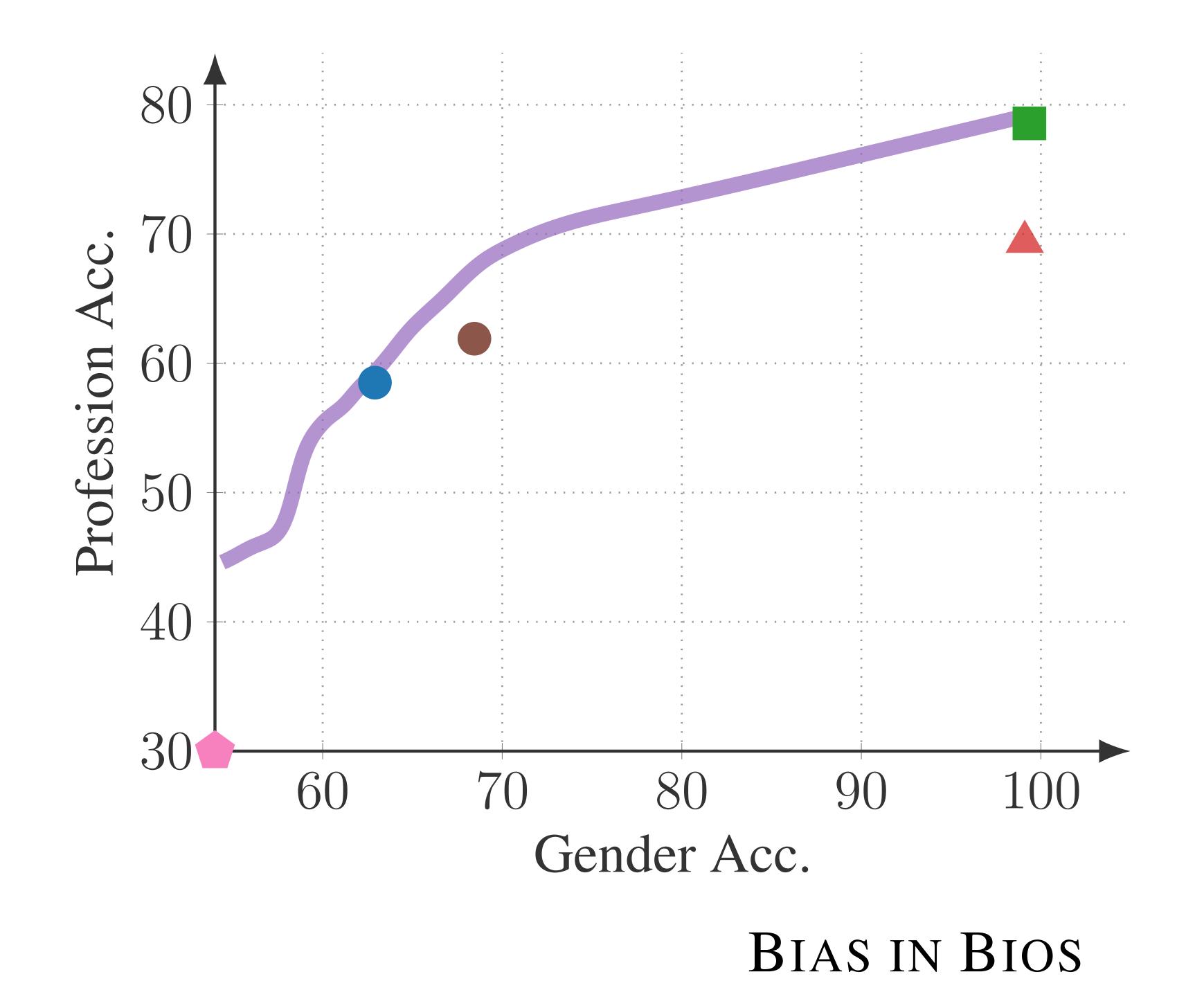


BIAS IN BIOS

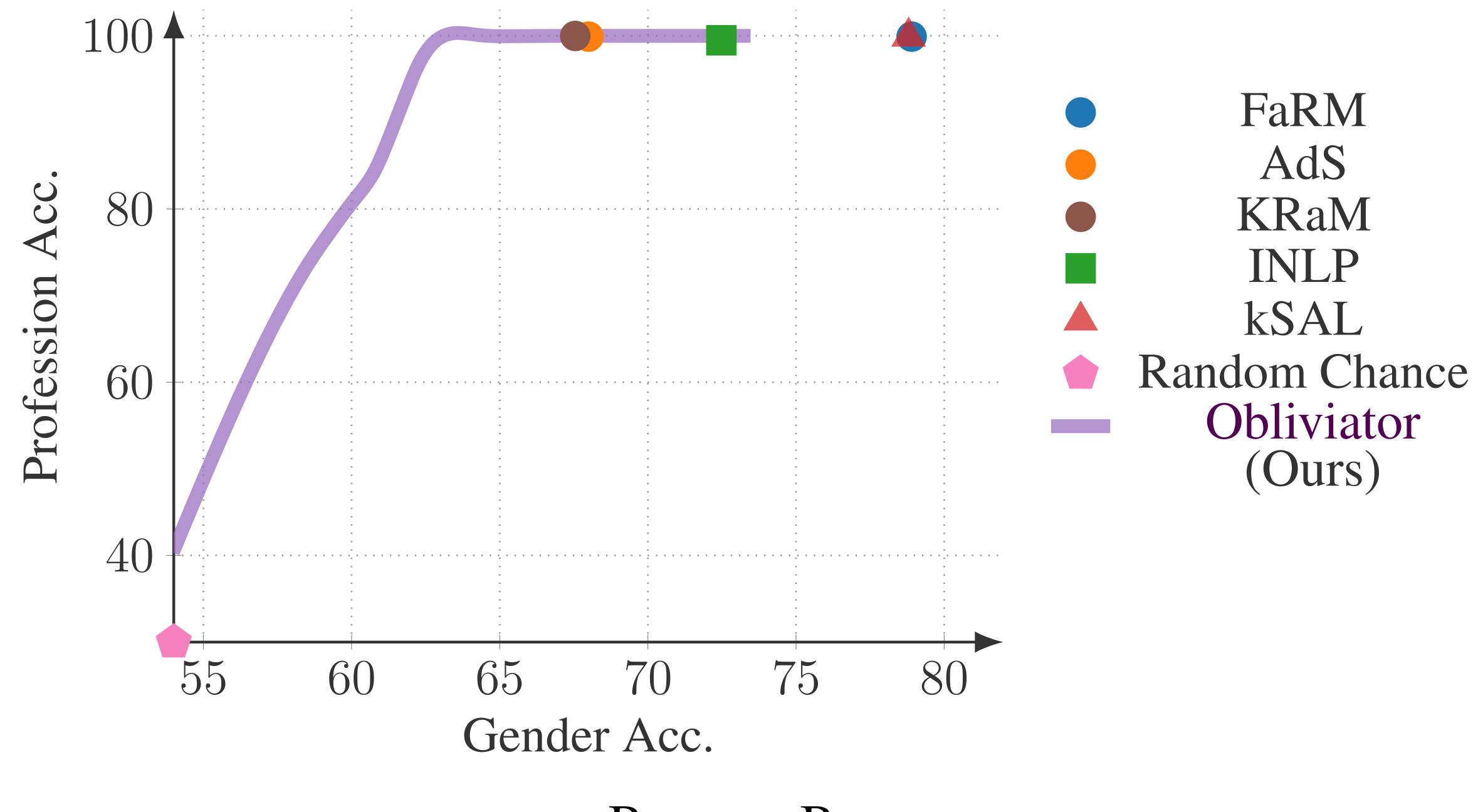
Representation: Finetuned

Utility: Profession
Unwanted: Gender PLM: BERT

Obliviator Reveals: Achieving Nonlinear Guardedness



Representation: Frozen



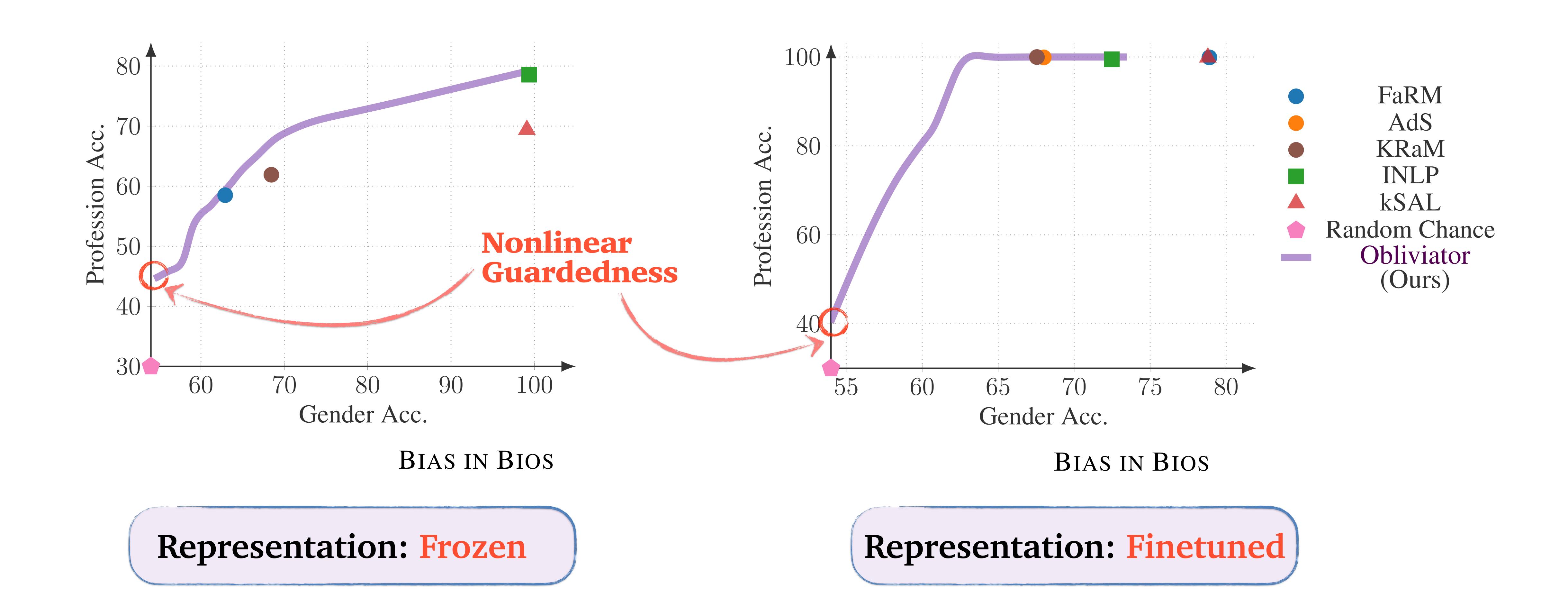
BIAS IN BIOS

Representation: Finetuned

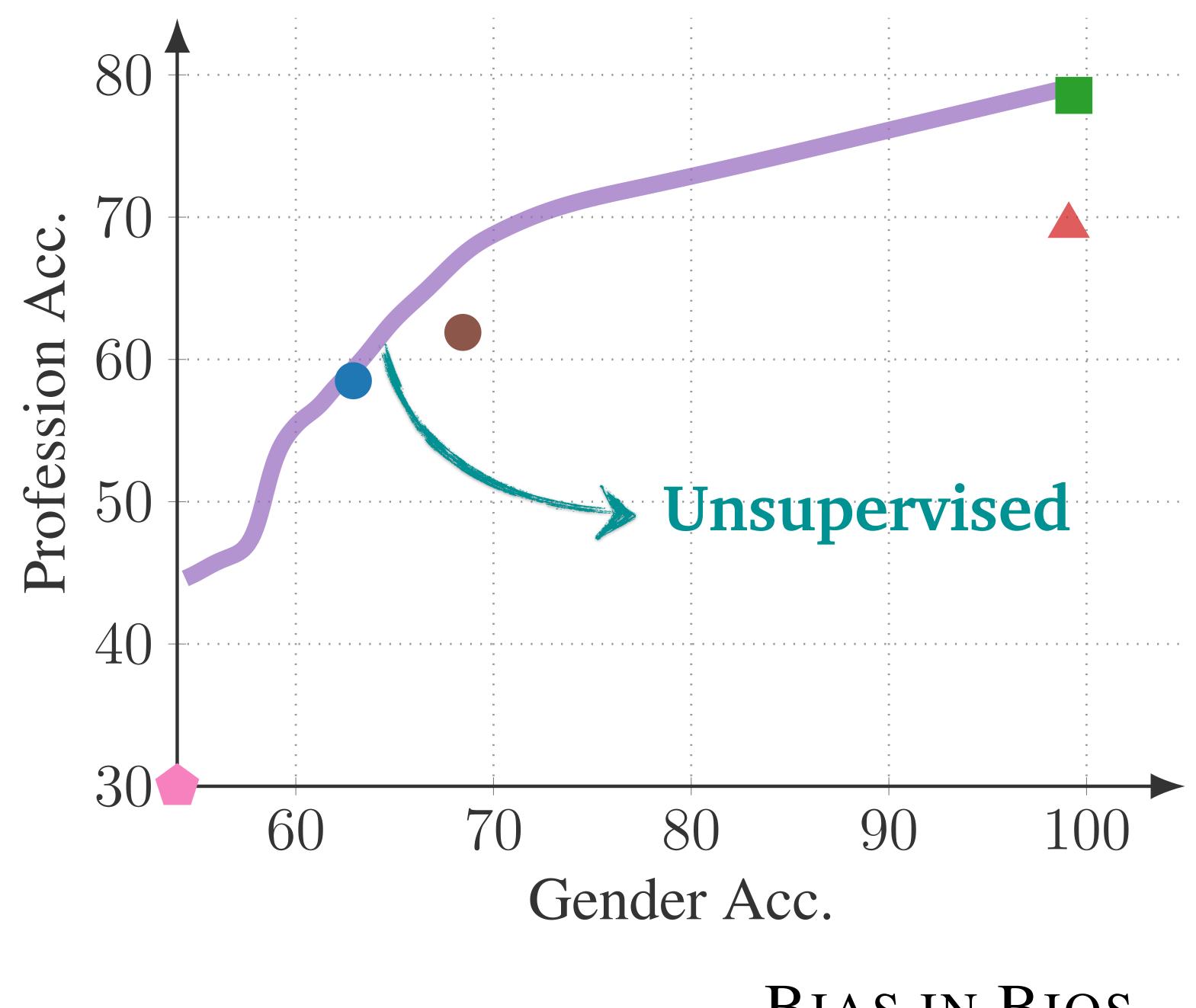
Utility: Profession
Unwanted: Gender PLM: BERT

Obliviator Reveals: Achieving Nonlinear Guardedness

PLM: BERT

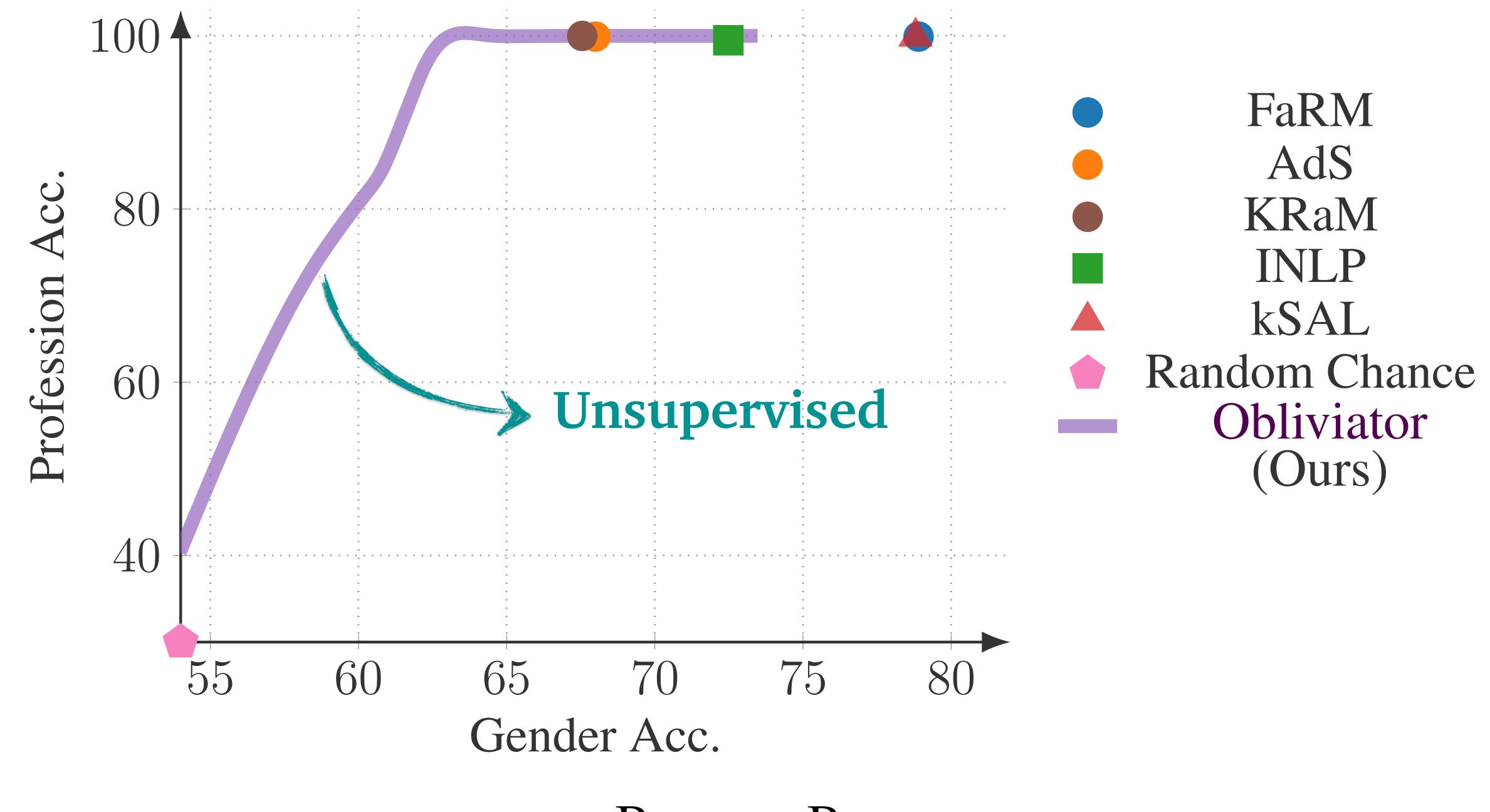


Utility: Profession
Unwanted: Gender



BIAS IN BIOS

Representation: Frozen



BIAS IN BIOS

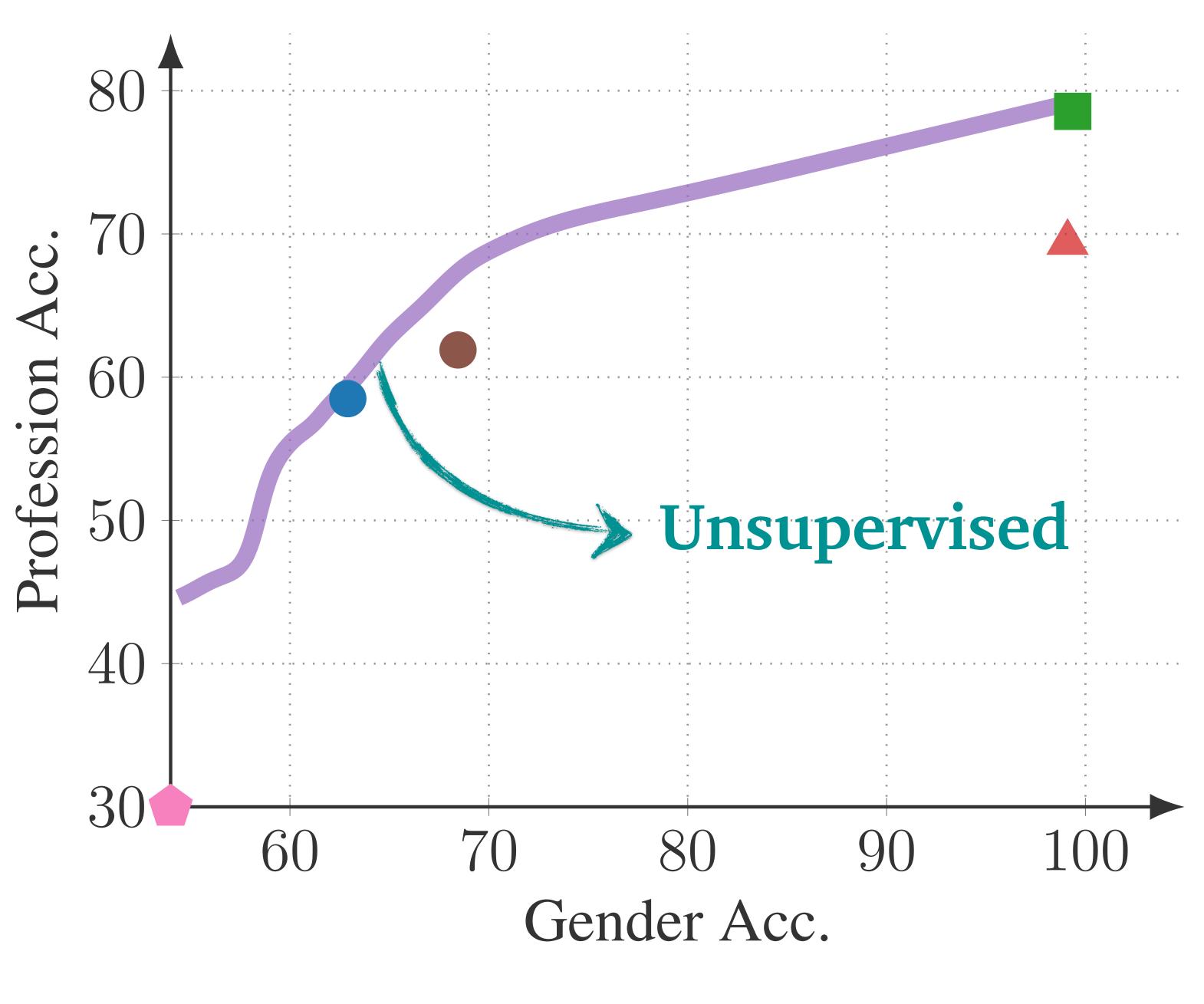
Representation: Finetuned

PLM: BERT

Utility: Profession
Unwanted: Gender

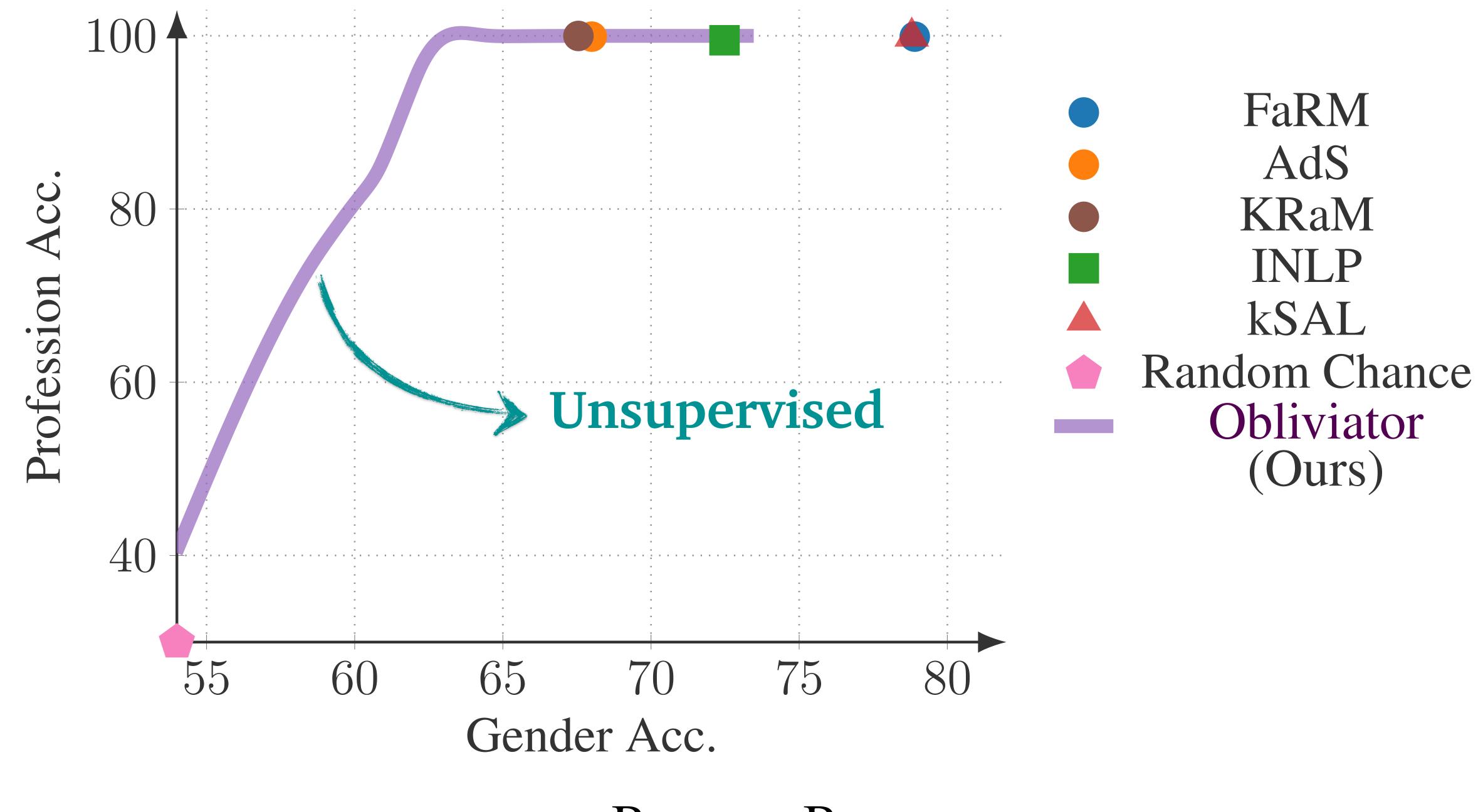
Unsupervised

$$\inf_{\theta} \quad \mathbf{HSIC}(Z_{\theta}, S) - \left[\mathbf{HSIC}(Z_{\theta}^{i}, Y) + \mathbf{HSIC}(Z_{\theta}^{i}, X) + \mathbf{HSIC}(Z_{\theta}^{i}, X^{i})\right]$$



BIAS IN BIOS

Representation: Frozen



BIAS IN BIOS

Representation: Finetuned

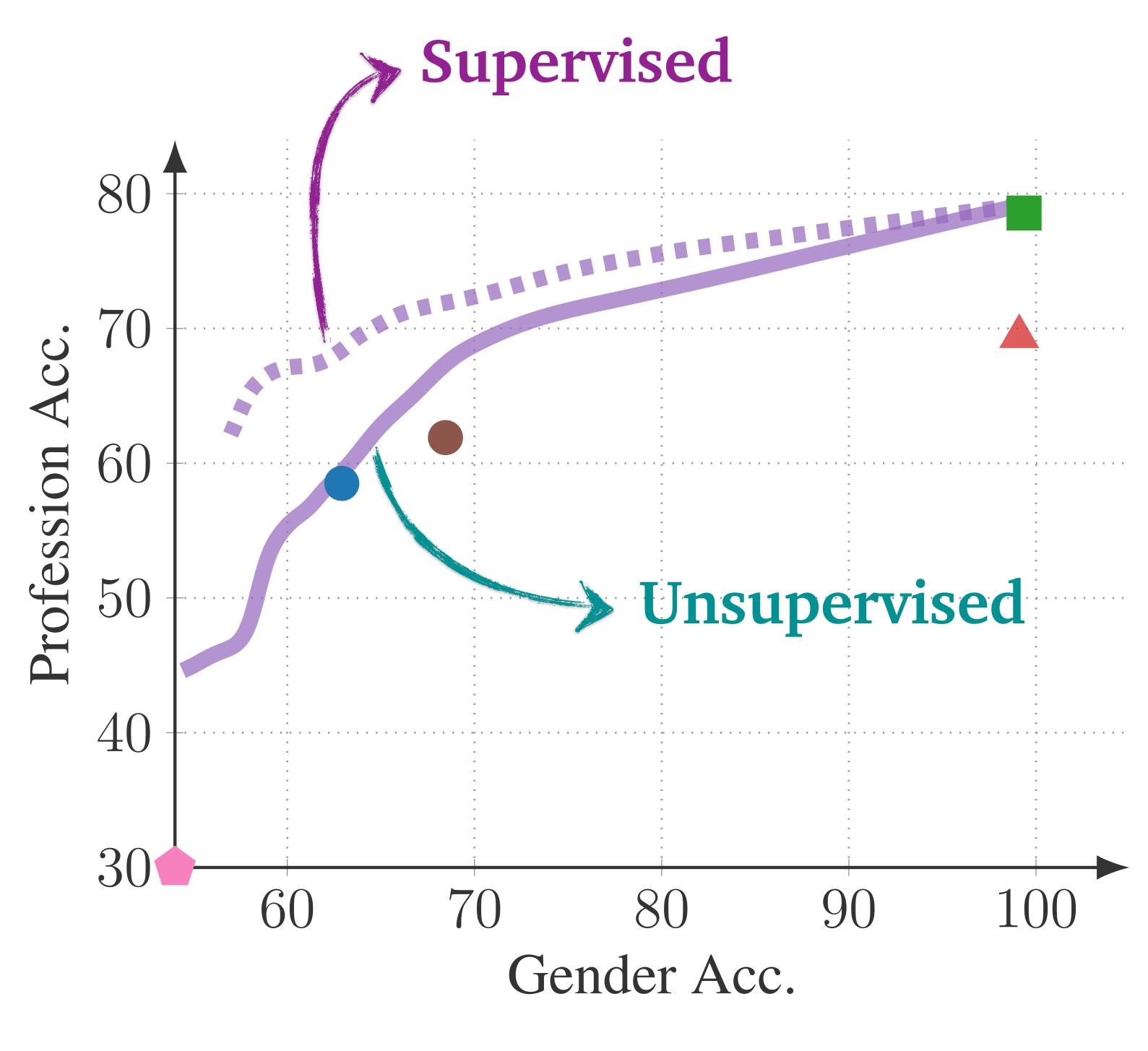
PLM: BERT

Utility: Profession

Unwanted: Gender

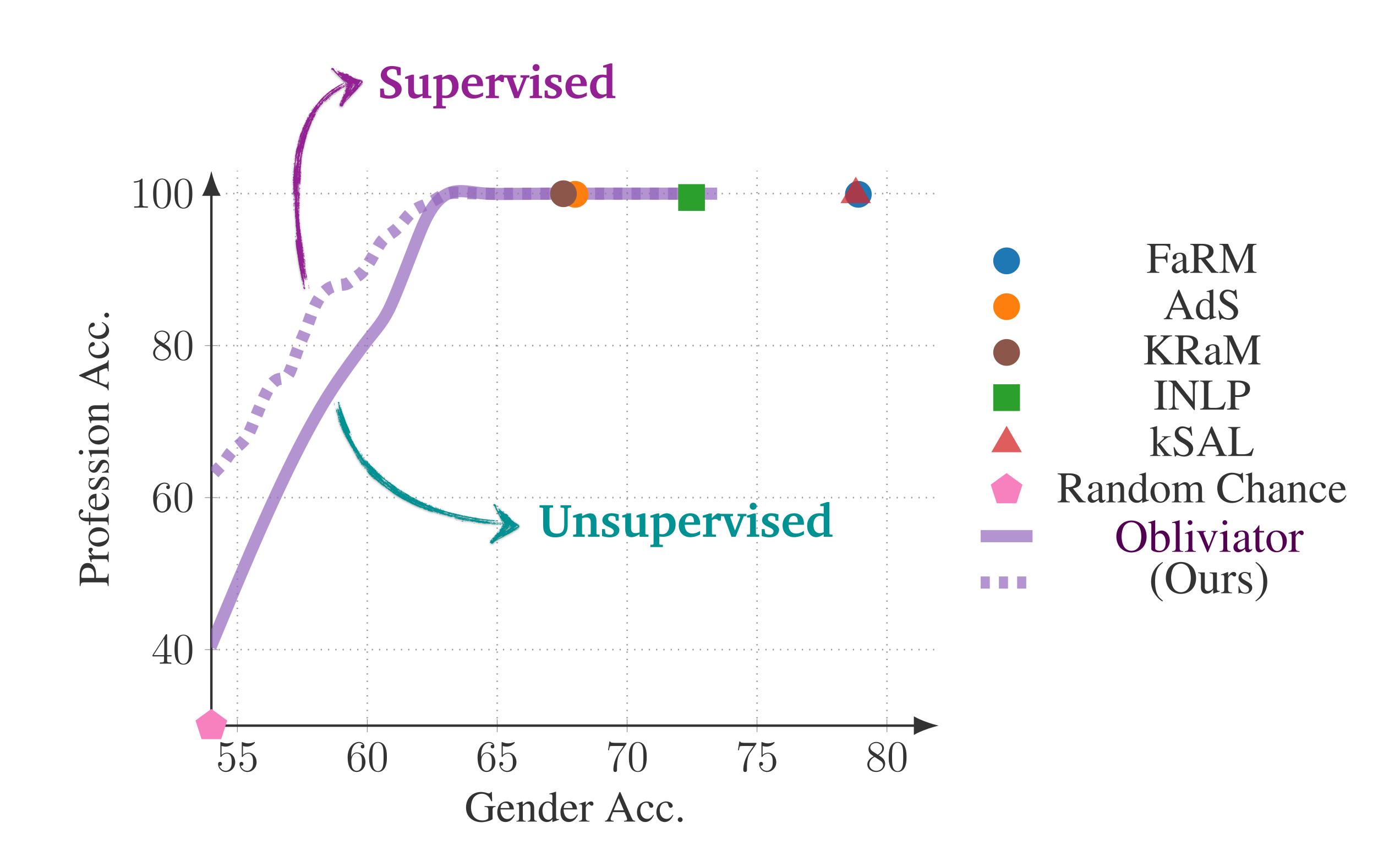
Supervised

$$\inf_{\theta} \quad \mathbf{HSIC}(Z_{\theta}, S) - \left[\mathbf{HSIC}(Z_{\theta}^{i}, Y) + \mathbf{HSIC}(Z_{\theta}^{i}, X) + \mathbf{HSIC}(Z_{\theta}^{i}, X^{i}) \right]$$



BIAS IN BIOS

Representation: Frozen



BIAS IN BIOS

Representation: Finetuned

PLM: BERT

Utility: Profession

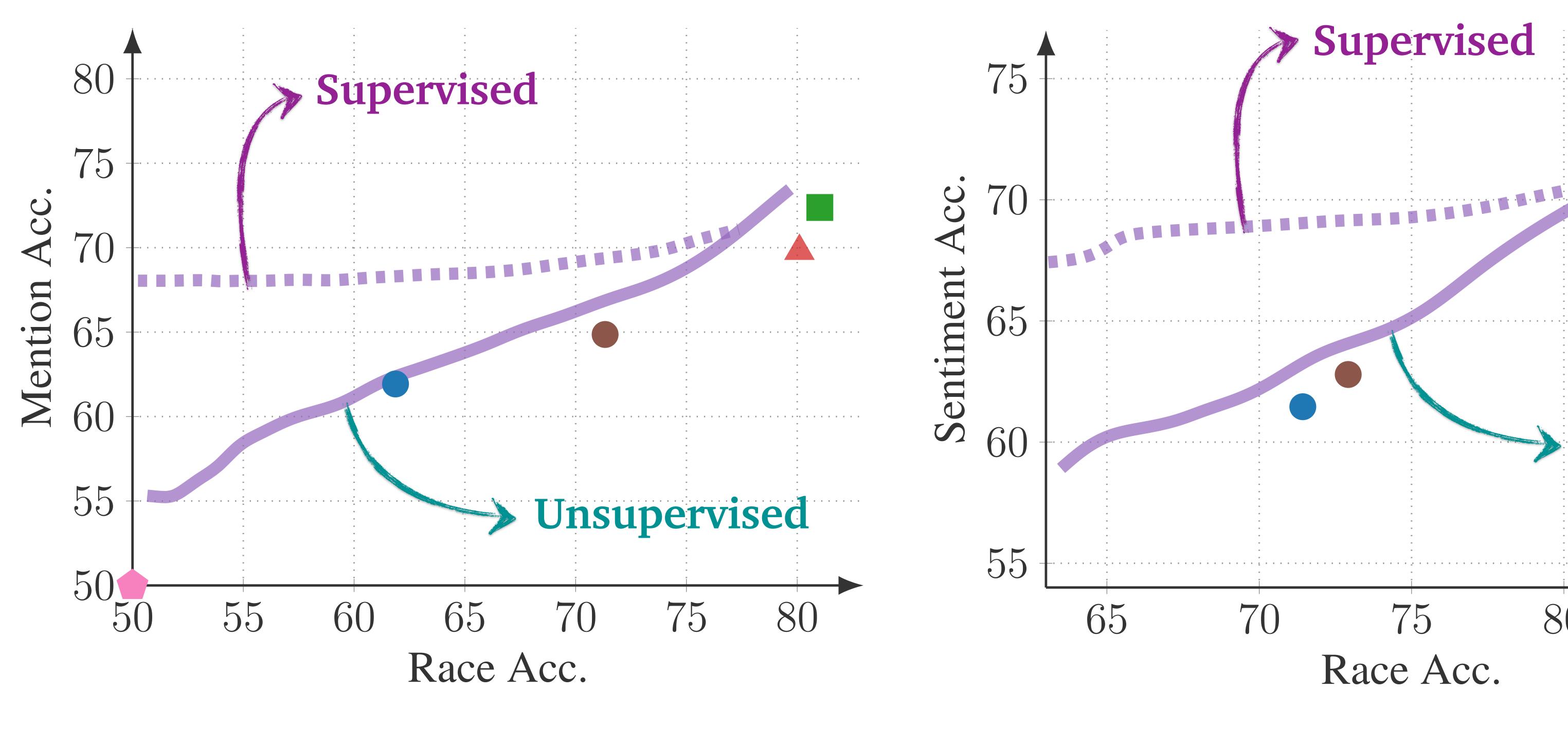
Unwanted: Gender

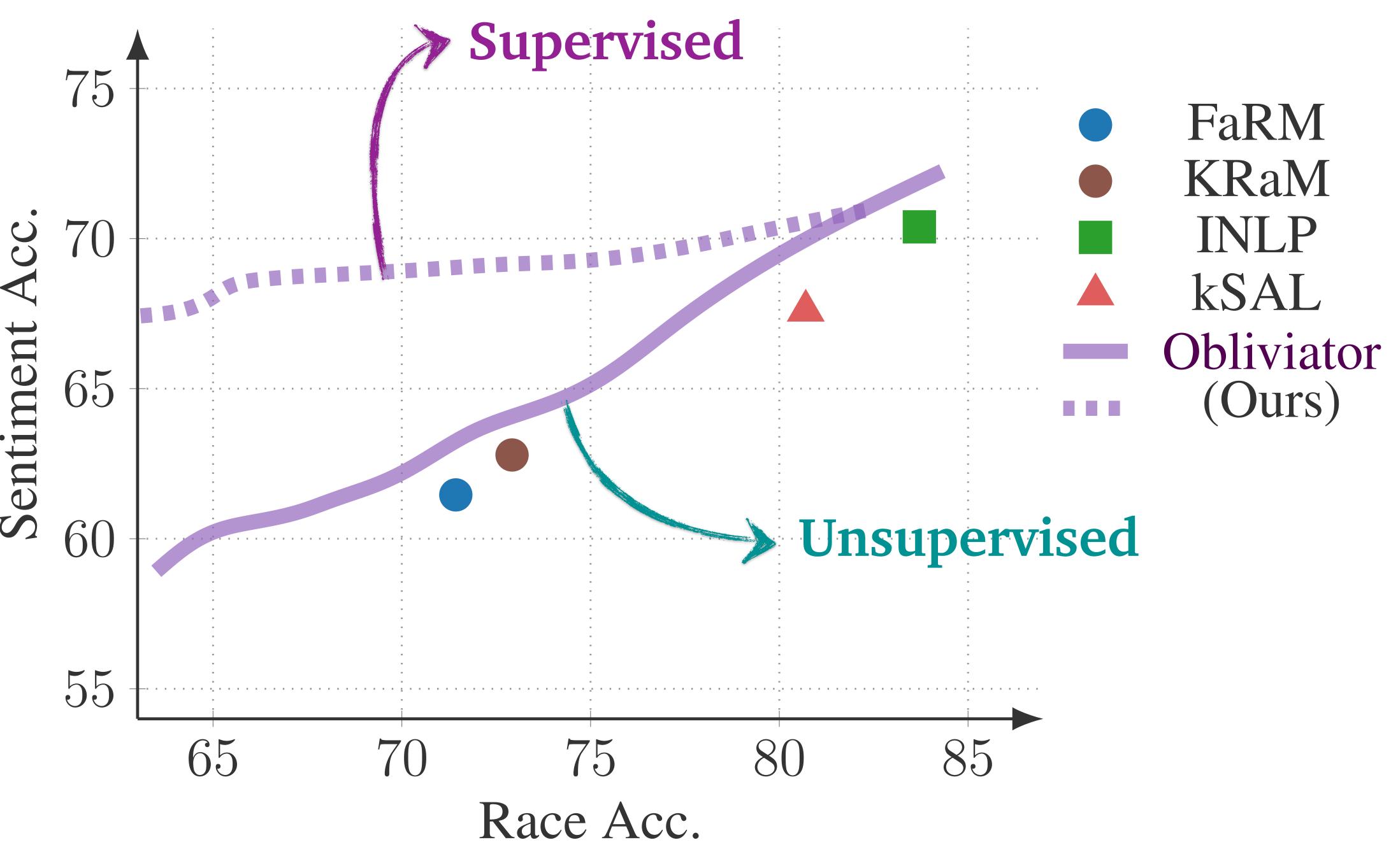
Utility: Mention

Unwanted: Race

Utility: Sentiment

Unwanted: Race





(a) DIAL-MENTION

(b) DIAL-SENTIMENT

Representation: Frozen

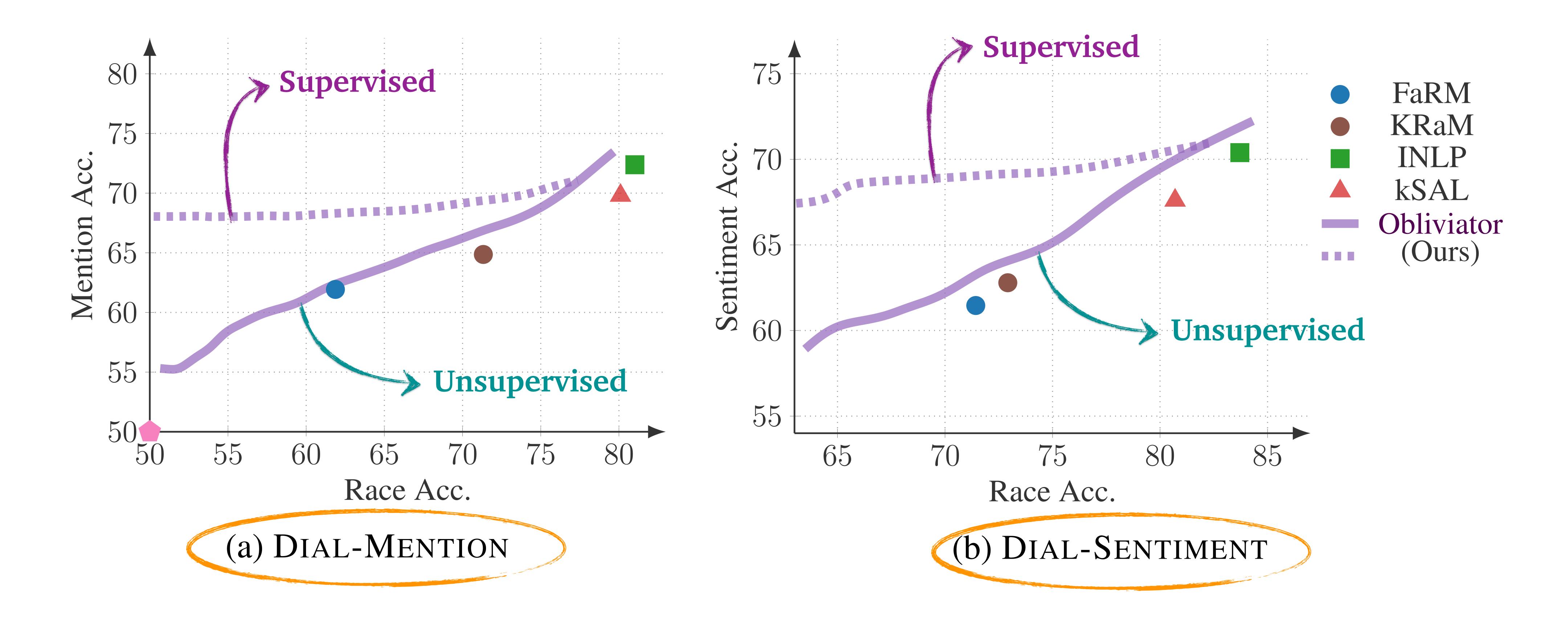
PLM: BERT

Utility: Mention

Unwanted: Race

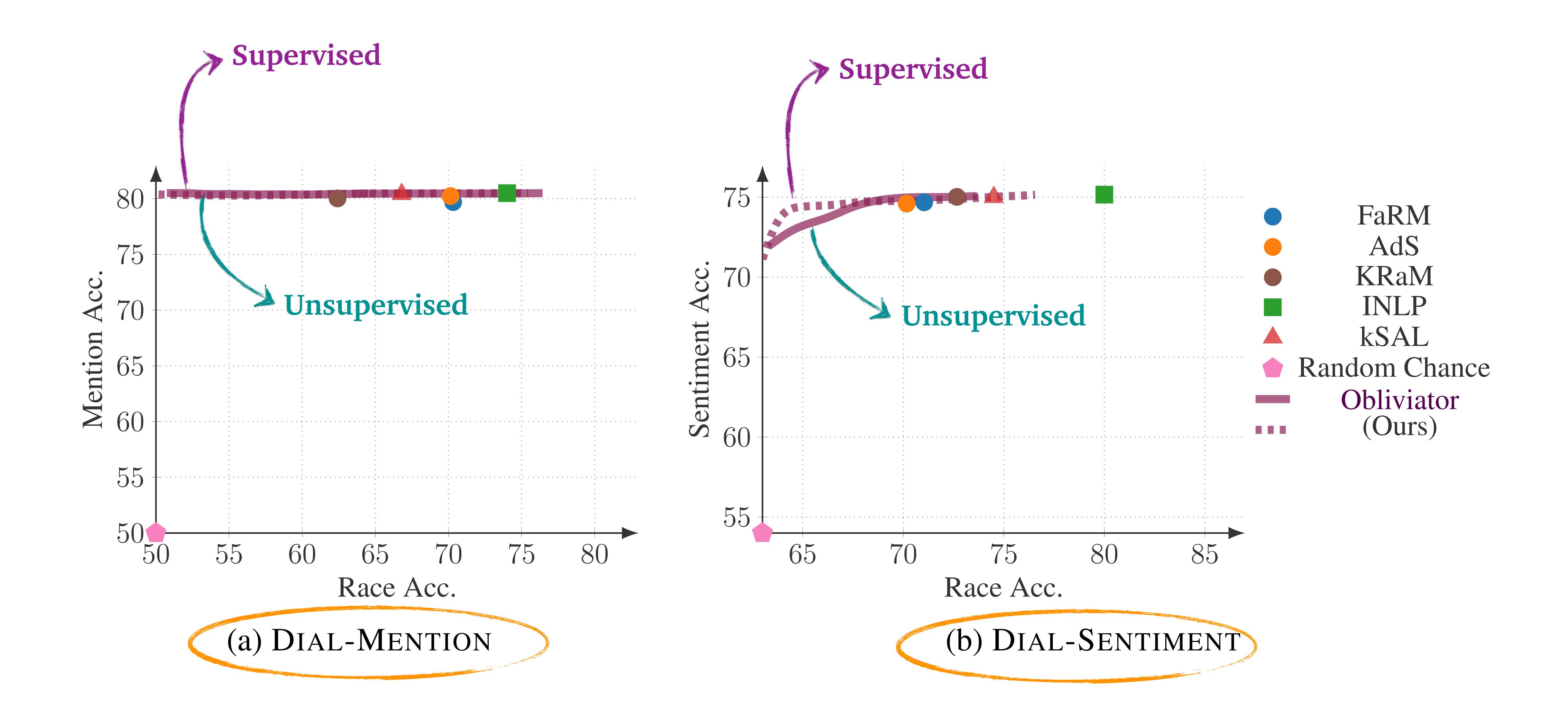
Utility: Sentiment

Unwanted: Race



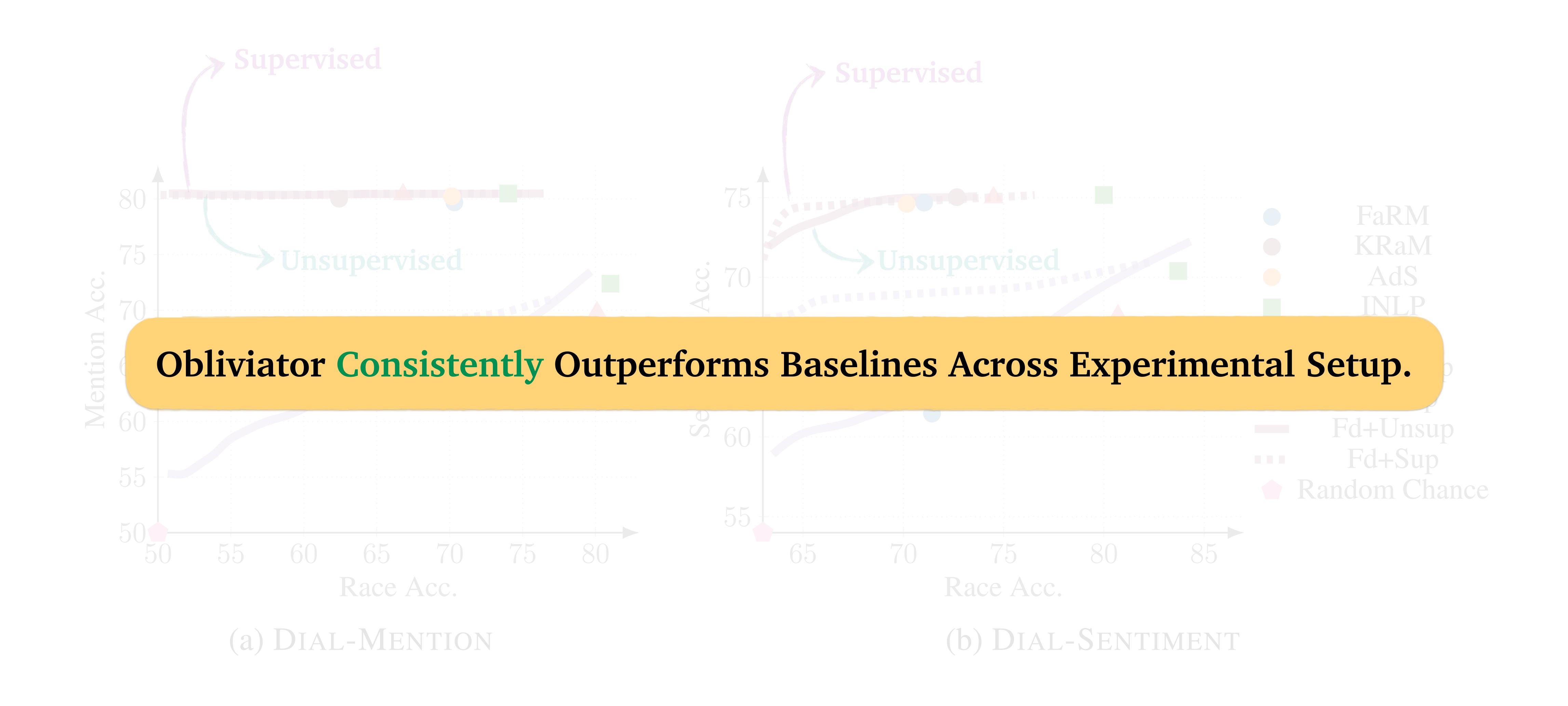
Representation: Frozen

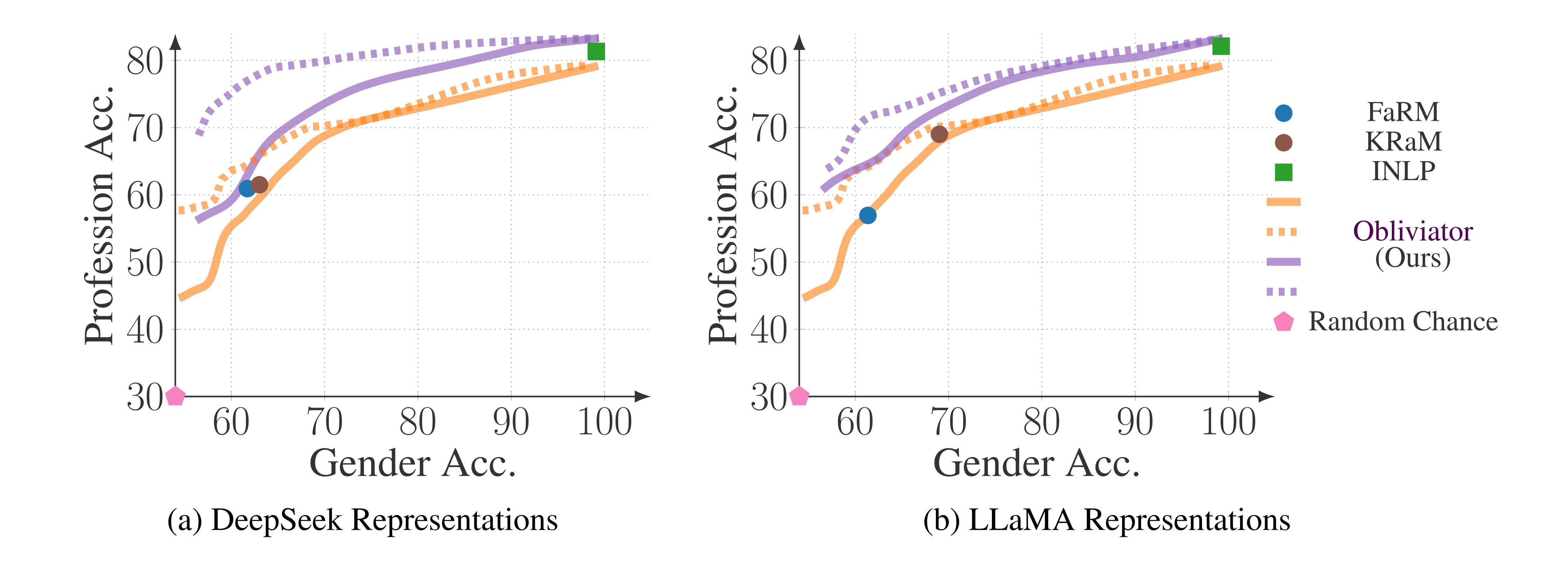
PLM: BERT

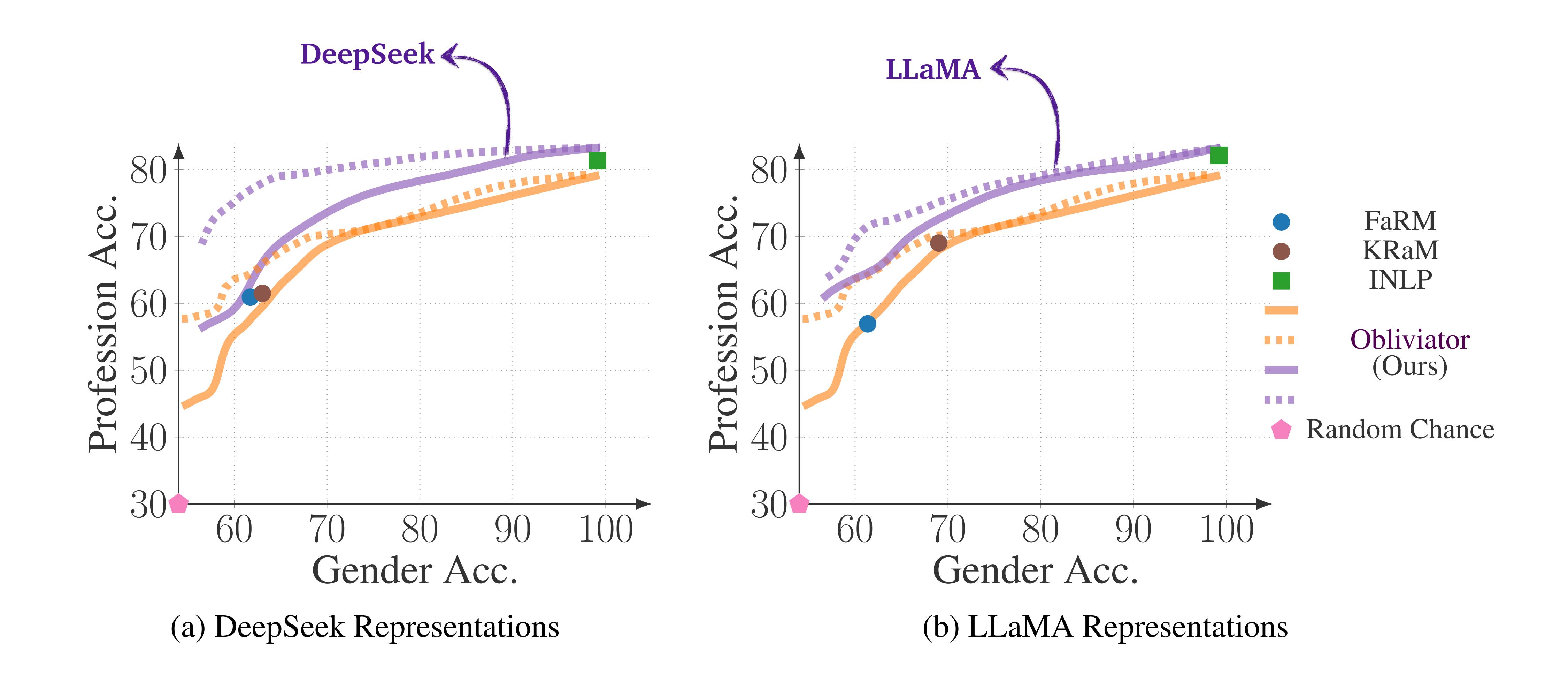


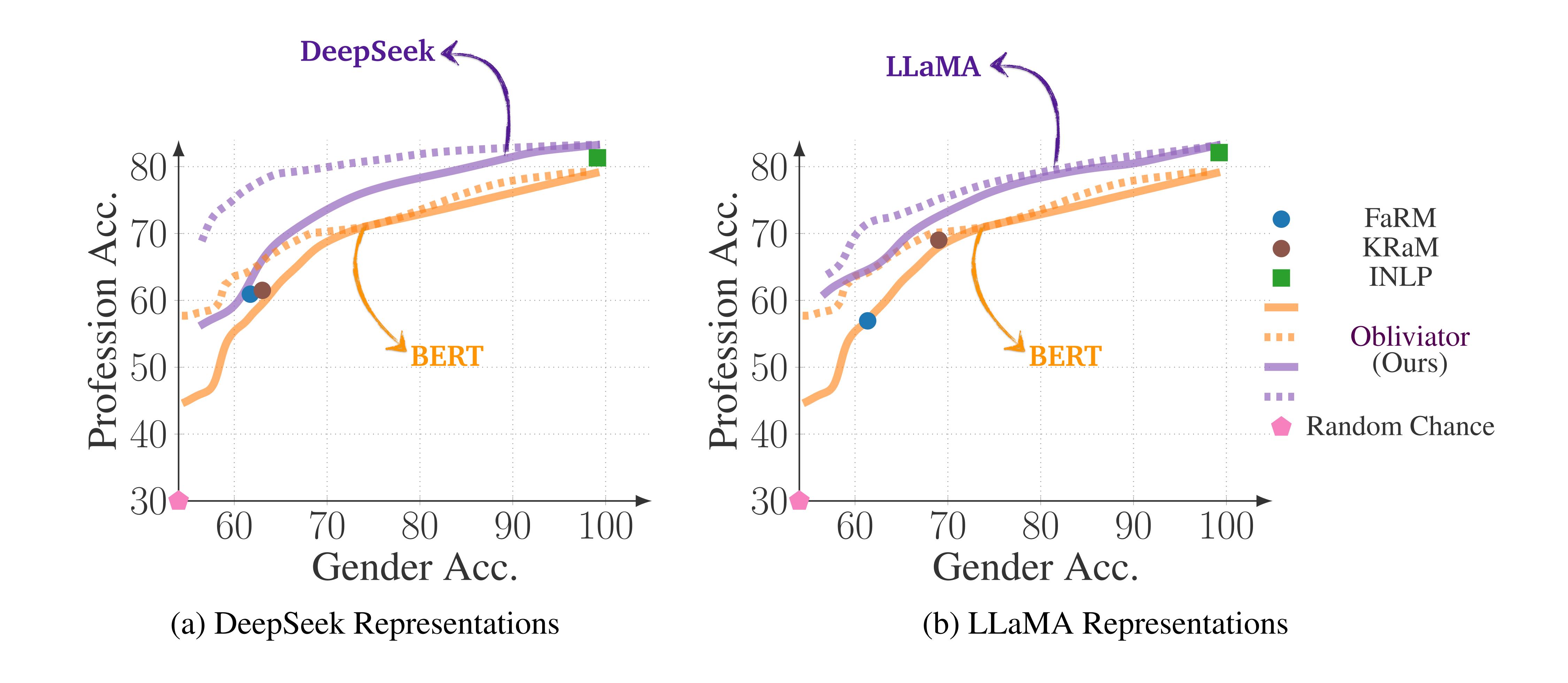
Representation: Finetuned

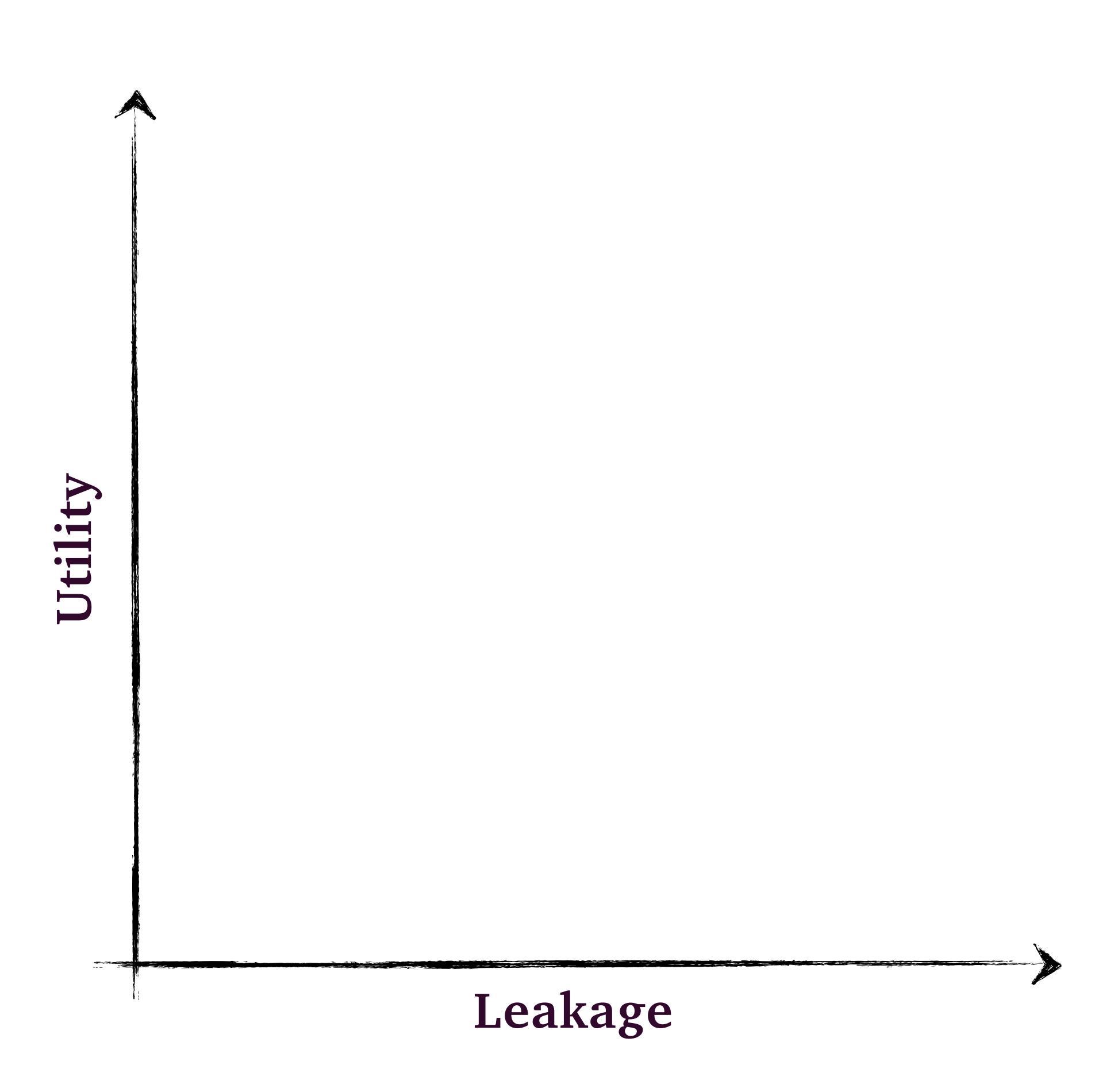
PLM: BERT

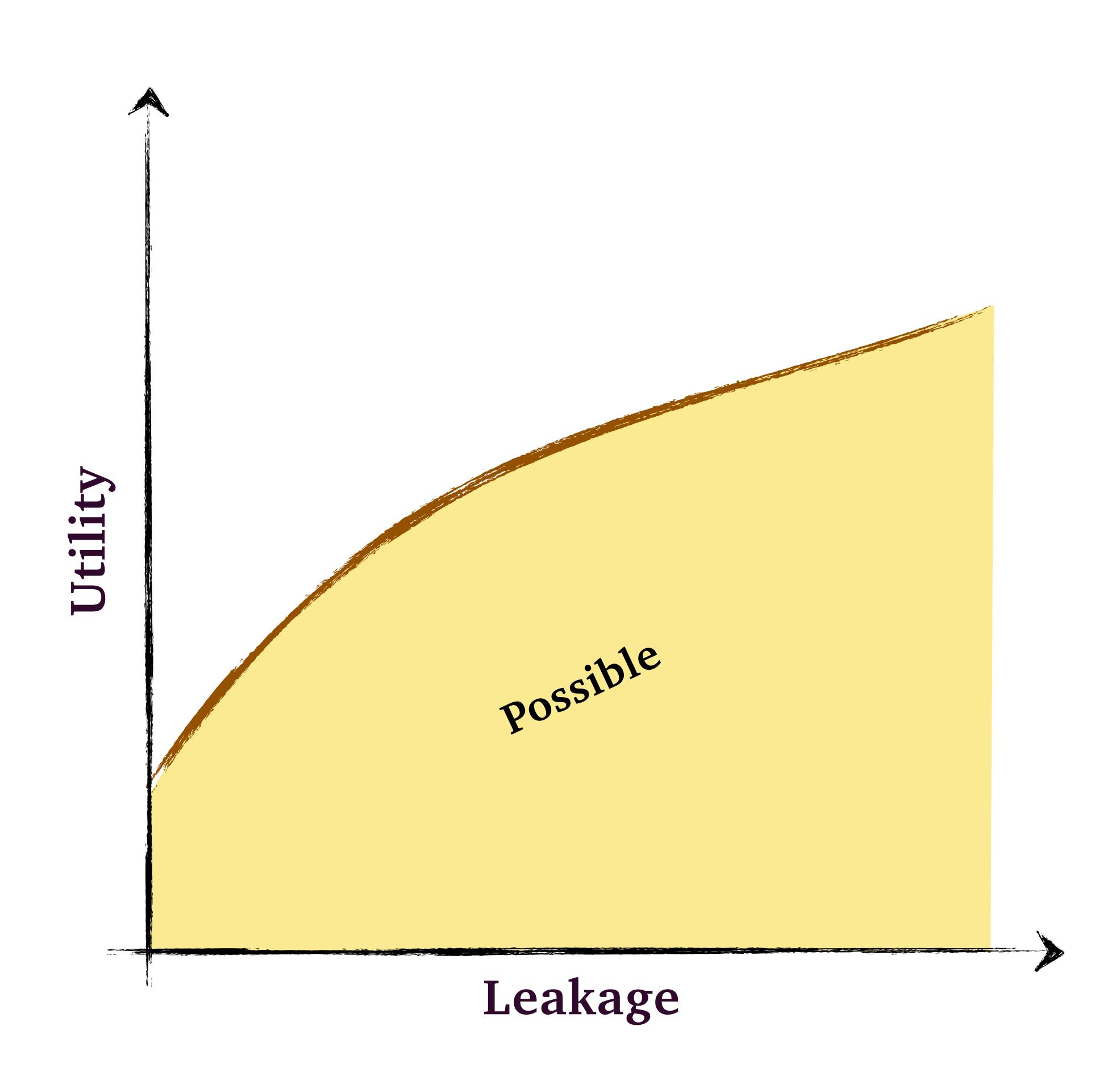


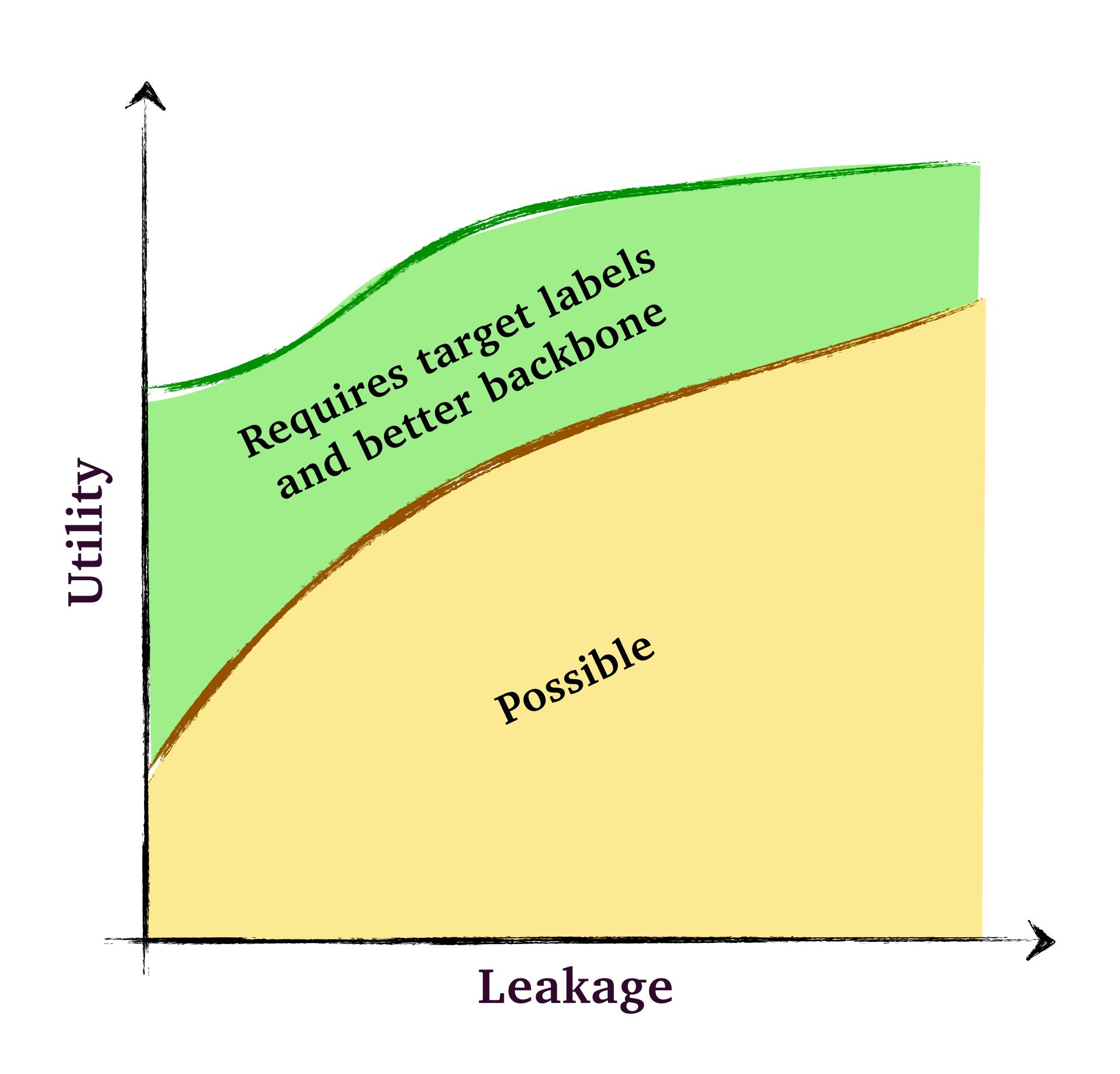


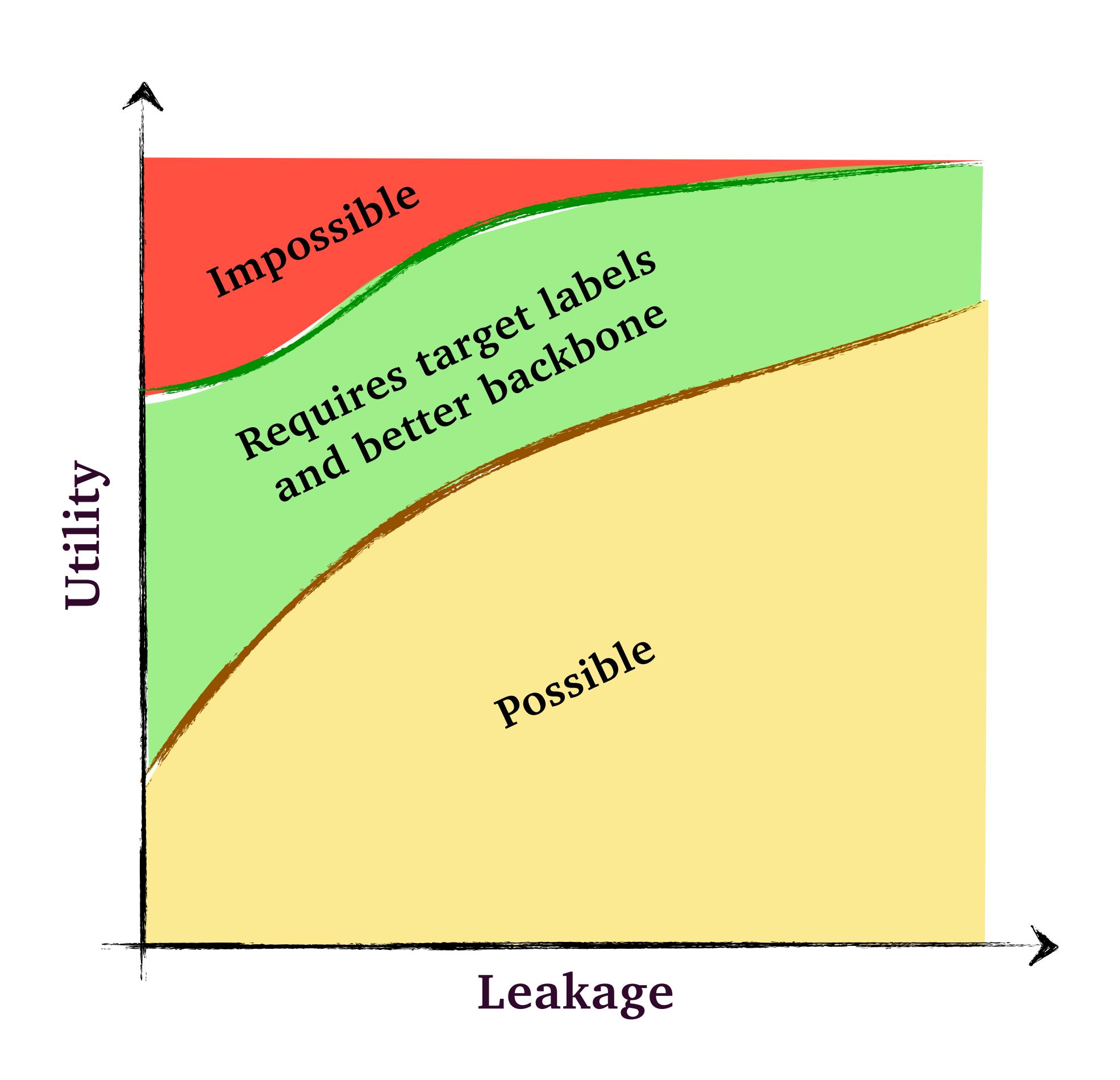




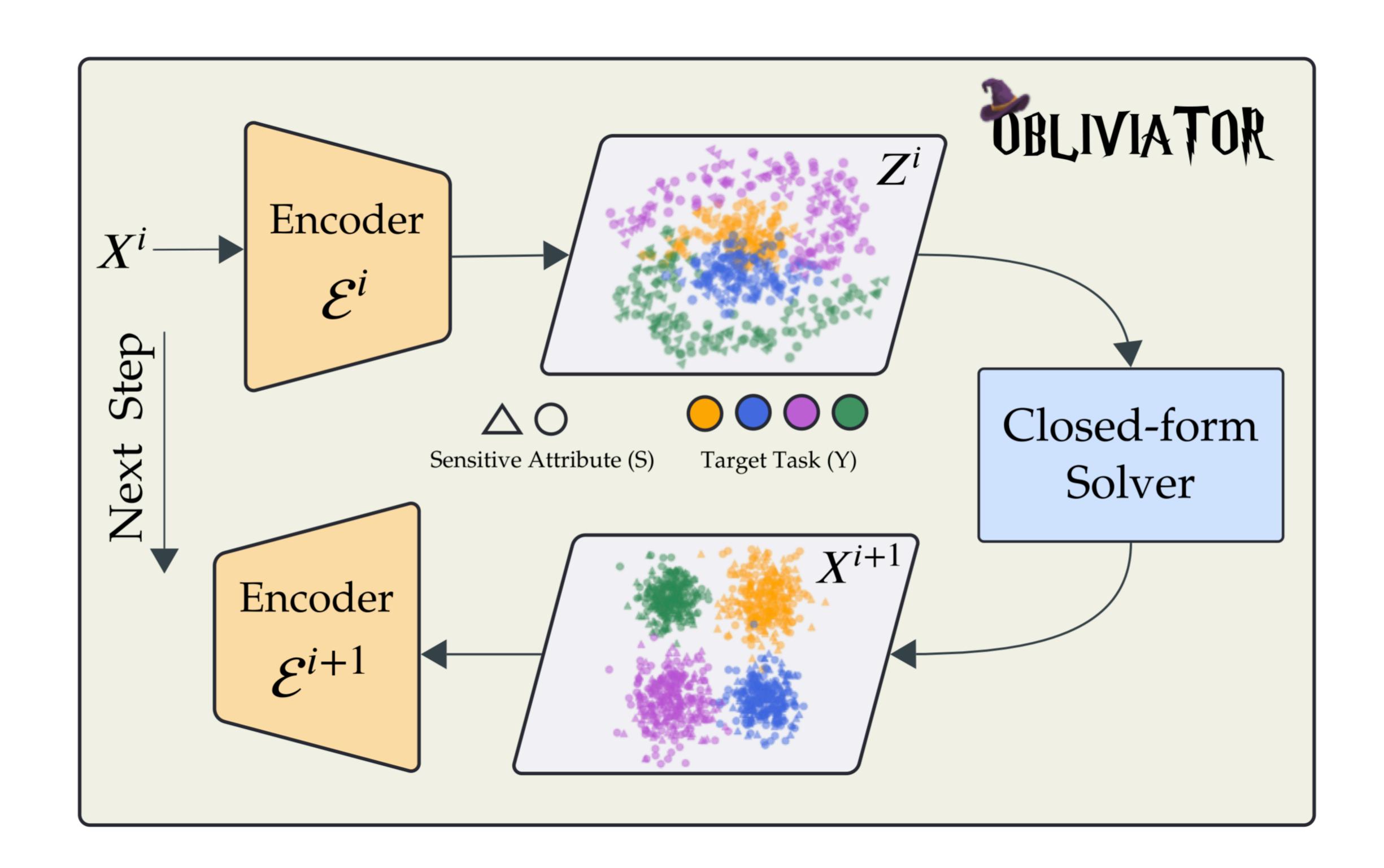








Obliviator At a Glance



- SOTA Utility-Erasure Trade-off
- Achieves Nonlinear Guardedness
- Computationally Efficient
- Fine-Control over Erasure

