

MEgoHand: Multimodal Egocentric Hand-Object Interaction Motion Generation

Bohan Zhou, Yi Zhan, Zhongbin Zhang, Zongqing Lu

03/12/2025

Motivation

MEgoHand: Generating hand-object motions from first-person views, instructions and initial states.

Wide Applications:

- Immersive virtual-real alignment in AR/VR.
- Robotic imitation learning from human demonstrations.

Key Challenges:

- Unstable and shifting viewpoints of egocentric views.
- Frequent self-occlusions of objects or hands.
- Strong perspective distortion and rapid scale changes because of close distance.
- Hard reasoning under partial observations and sparse visual cues.

Limitations of Existing approaches:

- Reliance on predefined 3D object priors (mass, geometry), limited generalization to novel objects.
- Multimodal approaches suffer from open-loop prediction errors, ambiguous generation or complex
 3D hand-object correlation pipelines.

Related Work

Hand-Object Interaction (HOI) Prediction

Method Type	Examples	Strengths	Limitations
Object-Centric	GEARS, MACS	Explicit physical modeling	Relies on 3D object priors
Text-Conditioned	DiffH2O, Text2HOI	Text-guided motion	Needs object-specific info
Image-Based	SIGHT-Fusion	Occlusion resilience	Requires object detection
Multimodal	LatentAct	Vision-text-contact fusion	Complex contact map pipeline

Introduction

Inputs:

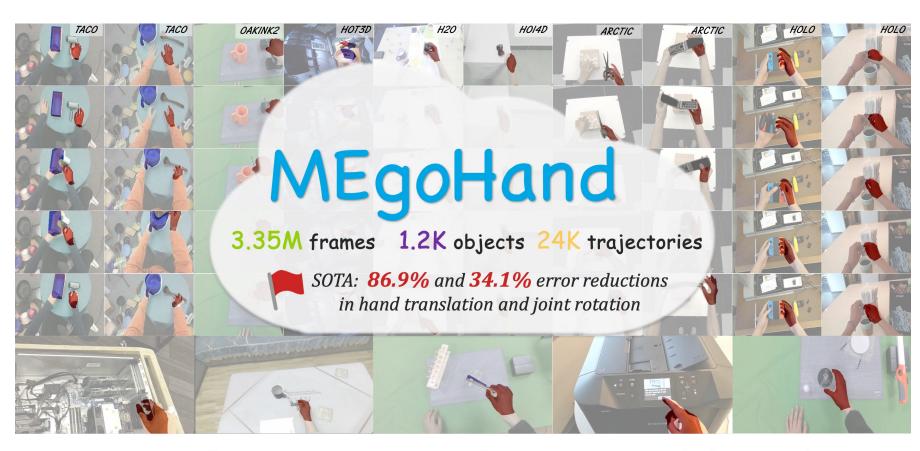
- Task Description
- Egocentric RGB
- Initial MANO State

Outputs:

Future MANO States

$$h = [\theta; \beta; r; t] \in \mathbb{R}^{109}$$

$$\theta \in \mathbb{R}^{15 \times 6}$$
 $t \in \mathbb{R}^3$ $\beta \in \mathbb{R}^{10}$ $r \in \mathbb{R}^{1 \times 6}$

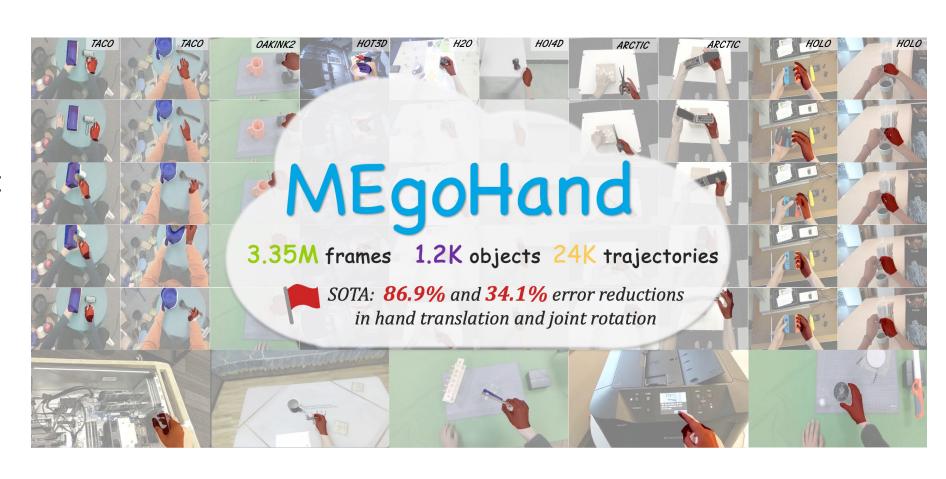


$$\mathcal{H}_k = \{h_{k+1}, h_{k+2}, \dots, h_{k+l}\} = \mathsf{MEgoHand}(\mathcal{T}, \mathcal{V}_k, h_k)$$

Introduction

Core Contributions

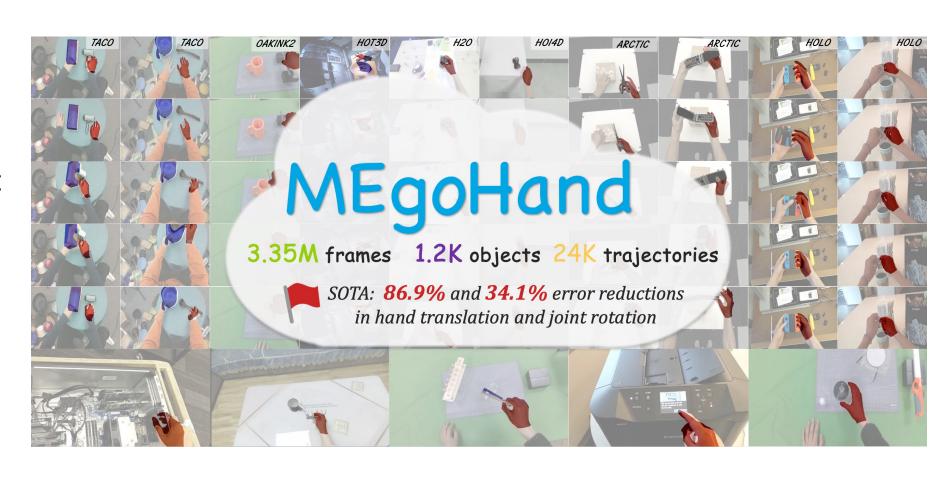
- Large-Scale Dataset
- Architecture Design
- Decoding Strategy
- Benchmarks



Methodology

Core Contributions:

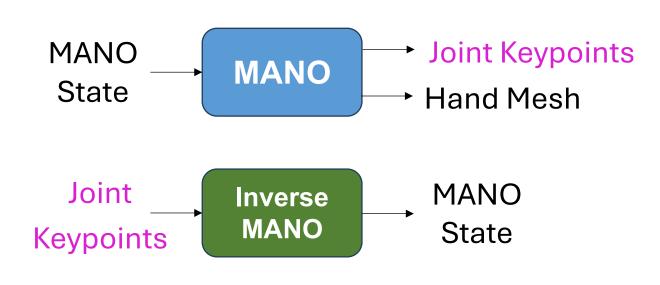
- Large-Scale Dataset
- Architecture Design
- Decoding Strategy
- Benchmarks



Dataset	Frame	Trajectory	Object	Mesh	RGBD
OakInk2 [42]	600K	2.5K	75	✓	X
HOT3D [2]	400K	3K	33	✓	X
HOI4D [26]	400K	3K	800	✓	✓
TACO [25]	300K	2.2K	218	✓	✓
H2O [19]	100K	1 K	8	✓	\checkmark
FPHA [15]	100K	1.3K	26	✓	✓
ARCTIC [12]	250K	1K	12	✓	Х
HOLO [37]	1200K	10 K	40	X	✓
Total	3.35M	24K	1.2K		

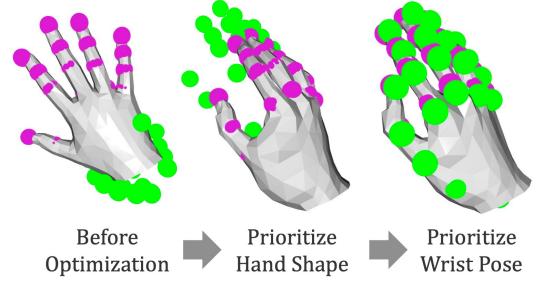
We integrate and preprocess large-scale public datasets into a unified and standardized training corpus by filling the missing modalities: (1) **MANO State Labels** (2) **Depth Input**.

Inverse MANO Retargeting: recover hand meshes from joint keypoints



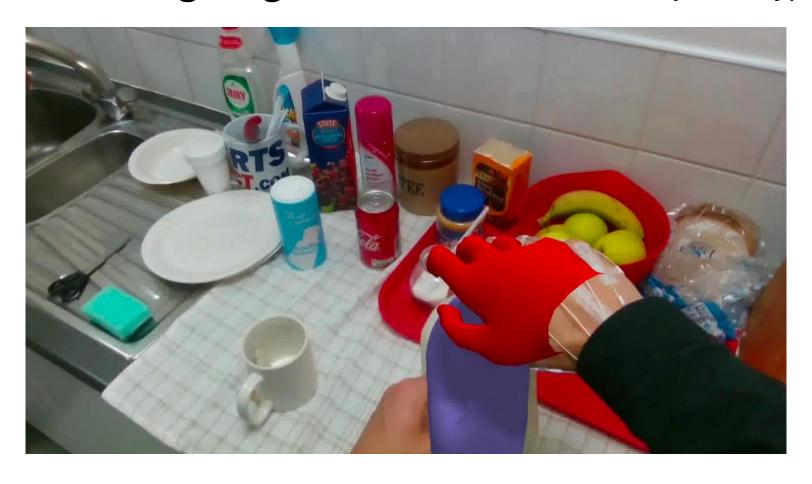
$$\mathcal{L}_1 = w_1 \mathcal{L}_{\text{shape}} (\phi(j), \theta, \beta) + \mathcal{L}_{\text{recon}} (\text{MANO}(\phi(j)), j),$$

 $\mathcal{L}_2 = w_2 \mathcal{L}_{\text{pose}} (\phi(j), r, t) + \mathcal{L}_{\text{recon}} (\text{MANO}(\phi(j)), j),$

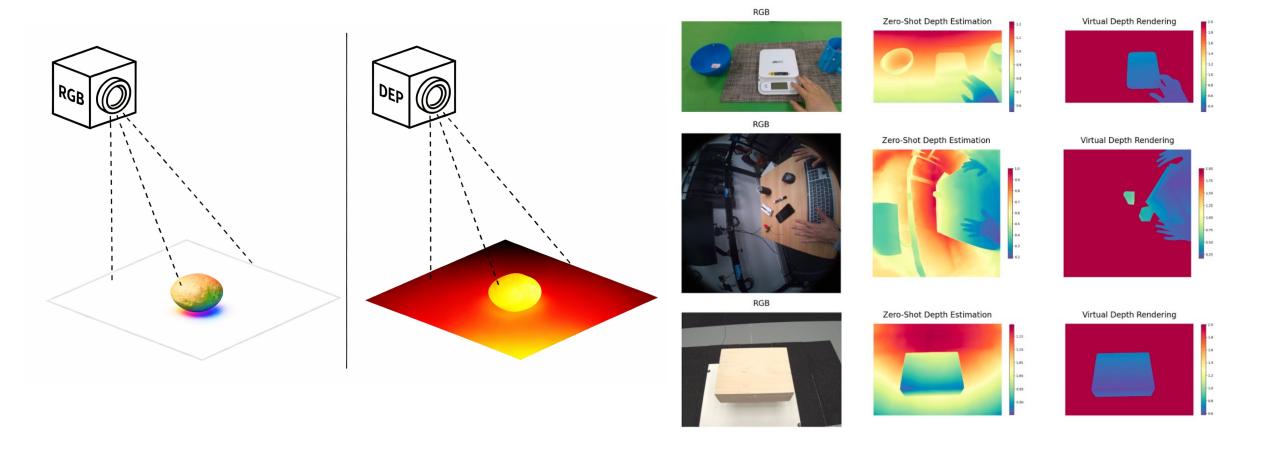


$$\mathcal{L}_{ ext{inv}}=\sigma\mathcal{L}_1+(1-\sigma)\mathcal{L}_2$$
 $w_1=4.0~\sigma=1~ ext{and}~w_2=5.0~\sigma=0$

Inverse MANO Retargeting: recover hand meshes from joint keypoints



Virtual RGB-D Rendering: synthesize depth images aligned with the RGB frames



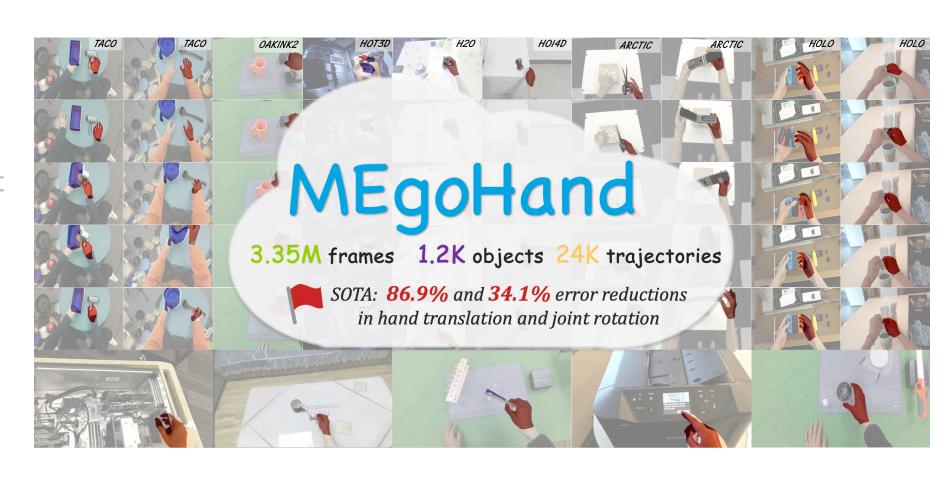
Virtual RGB-D Rendering: synthesize depth images aligned with the RGB frames

- 1. Transform to camera frame: $P_c = T_{cw} \cdot P_w^T$
- 2. Extract camera-space depth: $Z_c = (P_c)_z$
- 3. Project to homogeneous pixels: $\tilde{p}_{uv} = K \cdot (P_c \oslash Z_c)$
- 4. Convert to integer pixel indices: $p_{uv} = \pi\left(\tilde{p}_{uv}\right) = \operatorname{round}\left(\left[(\tilde{p}_{uv})_u, (\tilde{p}_{uv})_v\right]^T\right)$
- 5. Update depth map (for visible points): $D[v,u] = \min \left(D[v,u],Z_c^{(i)}\right)$
 - where $(u,v)=p_{uv}^{(i)}\in ext{image bounds and } Z_c^{(i)}>0$

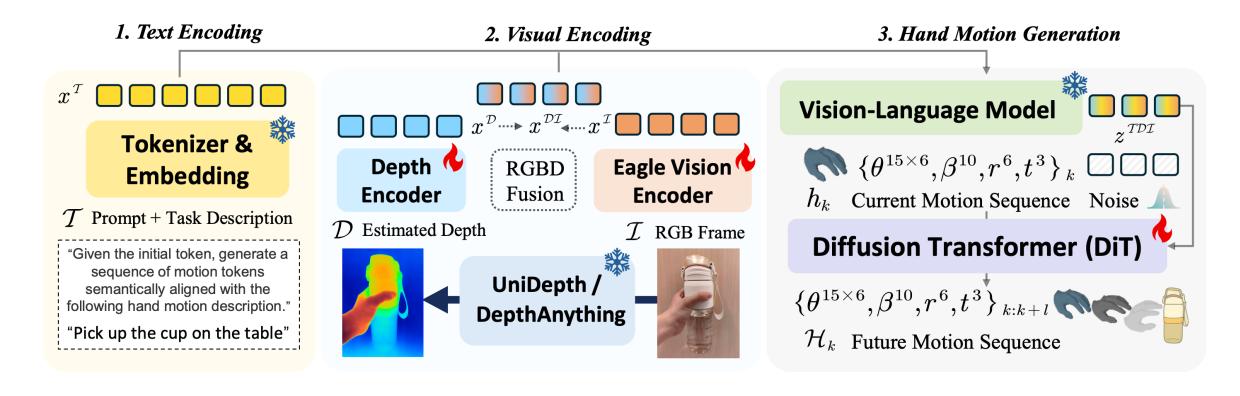
Methodology

Core Contributions:

- Large-Scale Dataset
- Architecture Design
- Decoding Strategy
- Benchmarks



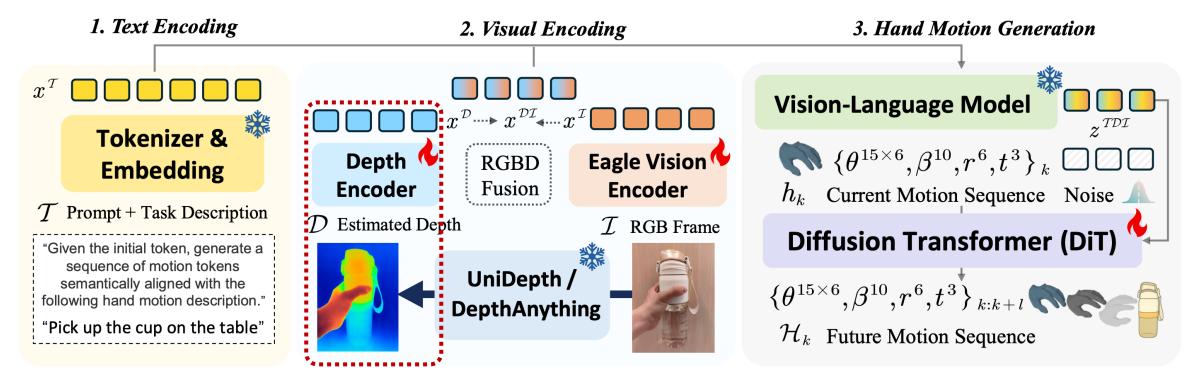
Architecture Design



- Backbone: pretrained **Eagle-2** [1], (**SmolLM2** language + **SigLIP-2** vision encoder)
- Decomposition: high-level ("cerebrum") reasoning and low-level ("cerebellum") DiT head

[1] Li, Zhiqi, et al. Eagle 2: Building post-training data strategies from scratch for frontier vision-language models. ARXIV 2025.

Architecture Design



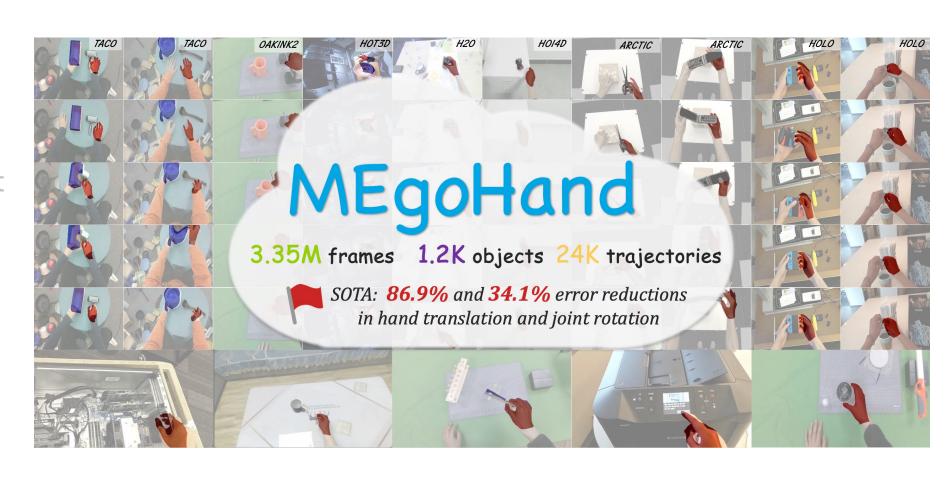
- Depth Encoder: pretrained ResNet-50 (stack 3-channel depth image as inputs)
- Depth Input: real / rendered depth during training and estimated depth during inference
- Training Objective: conditional flow matching loss

$$\mathcal{L}^{\tau}(\theta) = \mathbb{E}_{p(\mathcal{H}_k|h_k, z_k^{TDI}), q(\mathcal{H}_k^{\tau}|\mathcal{H}_k)} \left[\|\nu_{\theta}(\mathcal{H}_k^{\tau}, h_k, z_k^{TDI}) - \mathbf{u}(\mathcal{H}_k^{\tau}|\mathcal{H}_k) \|^2 \right] \quad \mathbf{u}(\mathcal{H}_k^{\tau}|\mathcal{H}_k) = \epsilon - \mathcal{H}_k$$

Methodology

Core Contributions:

- Large-Scale Dataset
- Architecture Design
- Decoding Strategy
- Benchmarks



Decoding Strategy

Temporal Orthogonal Filtering (TOF)

A training-free decoding strategy to denoise predicted rotation sequences.

- Temporal convolution aggregates all rotation and translation estimates
- resulting convolved rotation is then projected onto the closest valid SO(3) manifold via SVD.

$$\tilde{R}_k = \operatorname*{arg\,min}_{R \in \mathrm{SO}(3)} \left\| R - \bar{R}_k \right\|_F = UV^\top, \quad \text{where } USV^\top = \mathrm{SVD}(\bar{R}_k), \\ \bar{R}_k = \frac{1}{l} \sum_{t=1}^l \hat{R}_k^{k-t} = \frac{1}{l} \sum_{t=1}^l \hat{R$$

Decoding Strategy

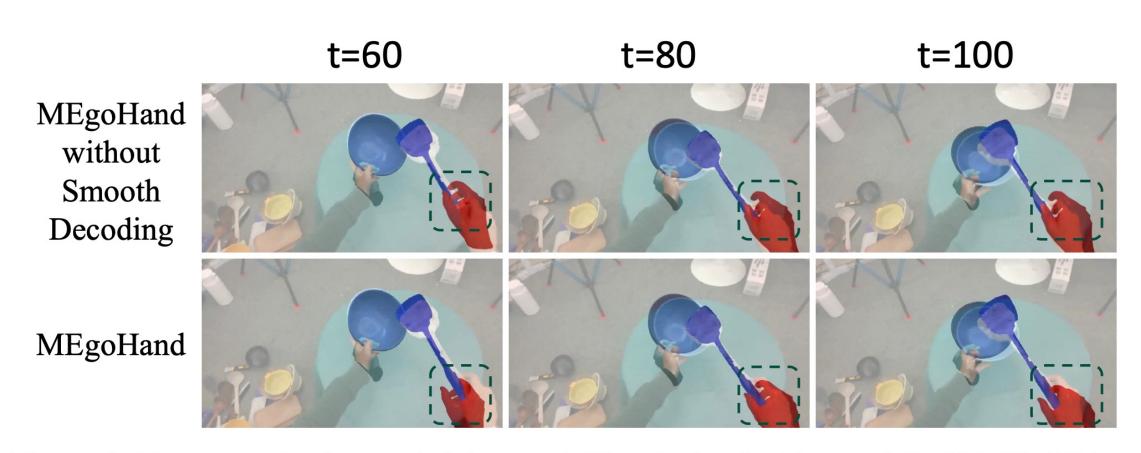
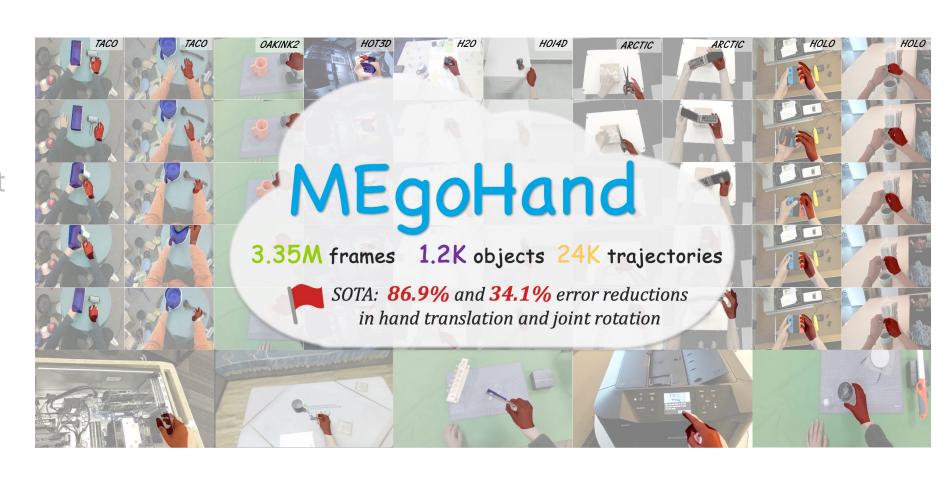


Figure 3: Frames randomly sampled from task "Stir the bowl with spatula" of TACO. Without decoding strategy, the predicted trajectory exhibits more fluctuations.

Methodology

Core Contributions:

- Large-Scale Dataset
- Architecture Design
- Decoding Strategy
- Benchmarks



In-Domain Evaluation

Table 1: Average metrics of in-domain evaluation across 5 datasets: TACO, HOI4D, H2O, HOT3D, and OakInk2. The unit for MRE is radians, and the remaining metrics are measured in centimeters.

Method	MPJPE↓	MPJPE-PA↓	MPVE↓	MPVE-PA↓	MWTE↓	MRE↓
LatentAct	7.726	1.478	7.696	1.453	7.221	0.937
no concat map	8.523	1.481	8.476	1.464	7.813	0.947
LatentAct-Diff	7.819	1.498	7.787	1.483	7.322	0.941
no concat map	8.802	1.582	8.752	1.564	8.051	0.950
MEgoHand-T	8.328	0.477	8.282	0.460	7.637	0.145
MEgoHand-I	6.269	0.480	6.120	0.457	5.521	0.143
MEgoHand-ID	5.969	0.470	5.920	0.453	5.213	0.137
MEgoHand-TI	5.683	0.476	5.632	0.459	4.889	0.136
MEgoHand (ours)	5.425	0.425	5.381	0.409	4.756	0.123

Cross-Domain Evaluation

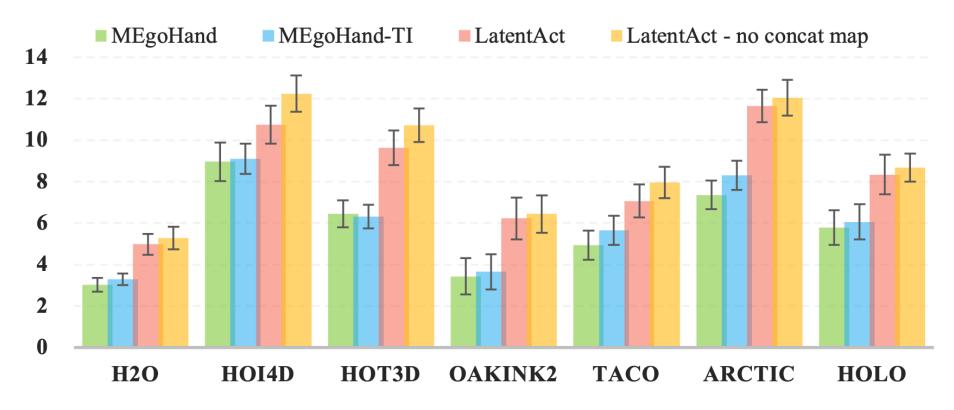


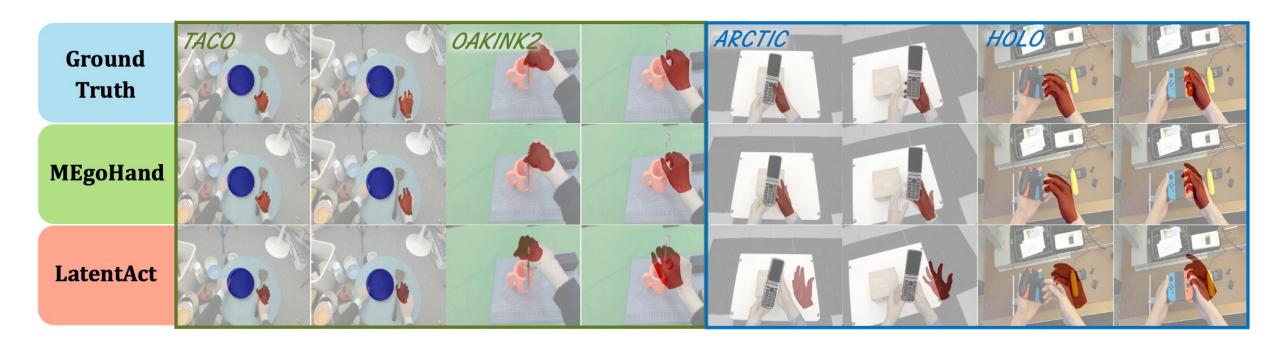
Figure 4: The evaluation of our two methods and two baseline variants on five in-domain (H2O, HOI4D, HOT3D, OAKINK2, TACO) and two cross-domain datasets (ARCTIC, HOLO), using MPJPE as metric (unit: cm, lower is better).

Ablations on Depth

Dataset	Method	MPJPE↓	MPJPE-PA↓	MPVE↓	MPVE-PA↓	MWTE↓	MRE↓
	MEgoHand	5.425	0.425	5.381	0.409	4.756	0.123
Evaluation	depthanythingv2	5.671	0.475	5.621	0.457	4.895	0.137
Datasets	 no depth supervision 	5.725	0.492	5.671	0.473	4.900	0.142
	relative depth	5.610	0.444	5.564	0.427	4.895	0.128
ARCTIC	MEgoHand	7.358	1.161	7.268	1.106	5.958	0.398
	depthanythingv2	8.240	1.220	8.141	1.203	6.287	0.544
	 no depth supervision 	8.174	1.140	8.092	1.092	6.608	0.436
	relative depth	7.564	1.121	7.485	1.091	6.082	0.473
HOLO	MEgoHand	5.775	0.697	5.747	0.673	5.437	0.271
	depthanythingv2	6.094	0.895	6.055	0.873	5.512	0.331
	 no depth supervision 	6.434	0.835	6.397	0.837	5.889	0.473
	relative depth	5.879	0.663	5.841	0.643	5.418	0.280

- MEgoHand is compatible with various depth estimators (UniDepth / DepthAnythingV2)
- Auxiliary depth supervision is imperative
- Metric depth is more sensitive to scenarios with drastic camera shifting.

Visualizations



MEgoHand consistently outperforms LatentAct with more accurate hand poses and finer geometric alignment, particularly in **wrist pose and finger joint rotations**. We analyze that **metric depth** inputs play an important role in the generation of higher precision.

Conclusion

Contributions

- Standardized dataset pipeline (3.35M frames, 1.2K objects, 24K tasks) solving annotation/representation inconsistencies.
- First framework combining VLMs and depth for egocentric HOI motion generation.
- SOTA performance on 7 datasets, with robust generalization to novel domains.

Future Extensions

- Annotate more HOI datasets with pretrained Inverse MANO network to scale up.
- Use modern hand pose detectors (e.g., HaMeR, HaWor) to label in-the-wild videos.

Thanks

Bohan Zhou 2025.12.03