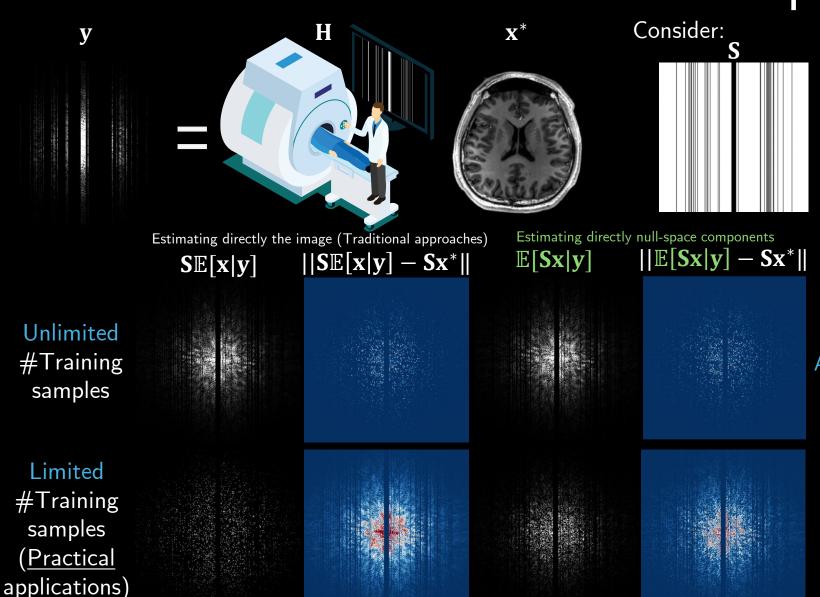
NPN Regularization For Imaging Inverse Problems

Learning null-space components for regularizing inverse problems in imaging

Inverse Problems and Null-Space



Can we recover $\mathbf{S}\mathbf{x}^*$ (blind signal components to \mathbf{H}) only from \mathbf{y} ?

Subset of Null-space

Conclusion

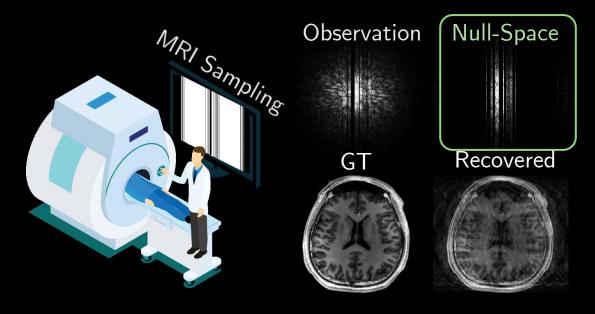
When the #Training samples is $\underline{\text{limited}}$ Activistbetteintatiestimiate $\underline{\mathbb{W}}[x][y]$ $\underline{\mathbb{E}}[Sx|y]$

We propose to estimate $G^*(y) \approx Sx^*$

Learned Null-Space Regularizer

 $\phi(\mathbf{x}) = \|\mathbf{G}^*(\mathbf{y}) - \mathbf{S}\mathbf{x}\|$ Accurate estimation **only** with $\mathbb{E}[\mathbf{S}\mathbf{x}|\mathbf{y}]$ **Main issue: High dimensionality of x**It can be used in any solver: Phy, DM,

Inverse Problems and Null-Space



Solution on image prior

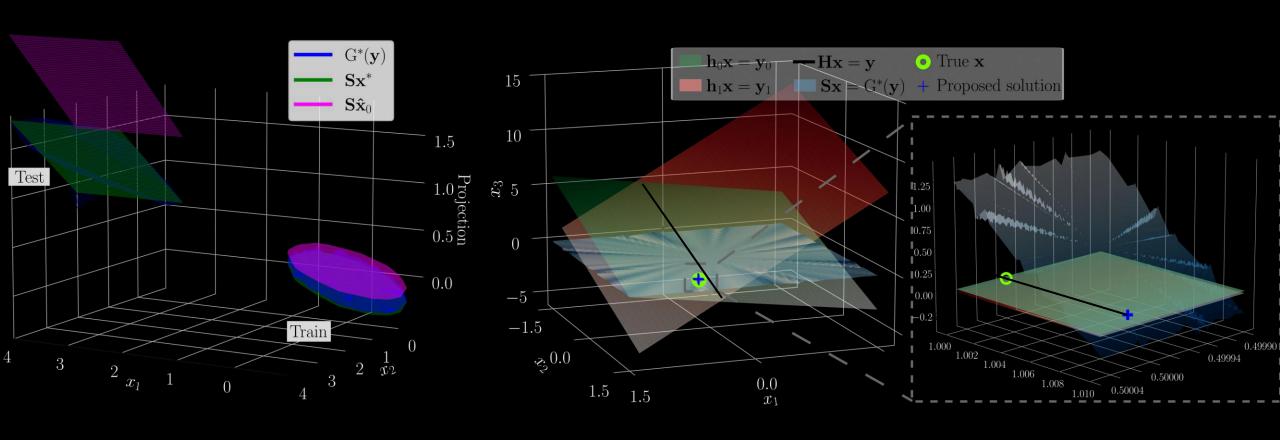
$$\hat{\mathbf{x}} = \underset{\tilde{\mathbf{x}}}{\operatorname{argmin}} \frac{1}{2} ||\mathbf{y} - \mathbf{H}\tilde{\mathbf{x}}||_{2}^{2} + \lambda h(\tilde{\mathbf{x}}) + \gamma \frac{1}{2} ||\mathbf{G}^{*}(\mathbf{y}) - \mathbf{S}\tilde{\mathbf{x}}||_{2}^{2}$$
Solution in range-
space
Solution in selected
null-space

 $\mathbf{S}\mathbf{x} \to \text{Null-Space components span}(\mathbf{S}^T) \subset \text{Null}(\mathbf{H})$

 \mathbf{y} $G(\mathbf{y}) \approx \mathbf{S}\mathbf{x}^*$

We propose to learn a regularization over blind image components to the sensing matrix

Null-Space Regularization



Low-dimensional learning provides better generalization

The regularization acts in a orthogonal direction to the data-fidelity

Learning Null-Space Component





Ensuring orthogonality between **H** and **S**

Fitting Null-Space component

Ensuring invertibility in the dataset subspace

Joint learning of **S** and **G**

Theoretical Advantages (PnP)

FISTA-PnP
$$\hat{\mathbf{x}} = \underset{\hat{\mathbf{x}}}{\operatorname{arg min}} \left| |\mathbf{y} - \mathbf{H}\tilde{\mathbf{x}}| \right|_{2}^{2} + \lambda h(\tilde{\mathbf{x}}) + \gamma \left| |\mathbf{G}^{*}(\mathbf{y}) - \mathbf{S}\tilde{\mathbf{x}}| \right|_{2}^{2} \rightarrow \mathbf{x}^{\ell+1} = \mathcal{D}(\mathbf{x}^{\ell} - \alpha \left(\mathbf{H}^{\mathsf{T}} \left(\mathbf{H} \mathbf{x}^{\ell} - \mathbf{y} \right) + \gamma \mathbf{S}^{\mathsf{T}} \left(\mathbf{S} \mathbf{x}^{\ell} - \mathbf{G}^{*} (\mathbf{y}) \right) \right)$$

Convergence improvement zone

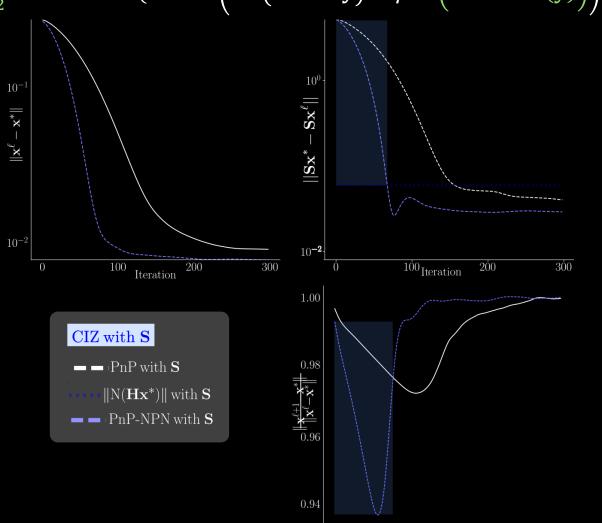
Iterations in which the null-space predictor outperforms projecting the iterate reconstruction in the null-space

$$\mathcal{L} = \left\{ \ell : \left| |G^*(\mathbf{y}) - \mathbf{S}\mathbf{x}^*| \right| < \left| |\mathbf{S}\mathbf{x}^{\ell} - \mathbf{S}\mathbf{x}^*| \right| \right\}$$

Th. 1: PnP-NPN Convergence: For $\ell \in \mathcal{L}$, the residual $\|\mathbf{x}^{\ell+1} - \mathbf{x}^*\|$ decay linearly with rate

Small as $\mathbf{H} \perp \mathbf{S}$

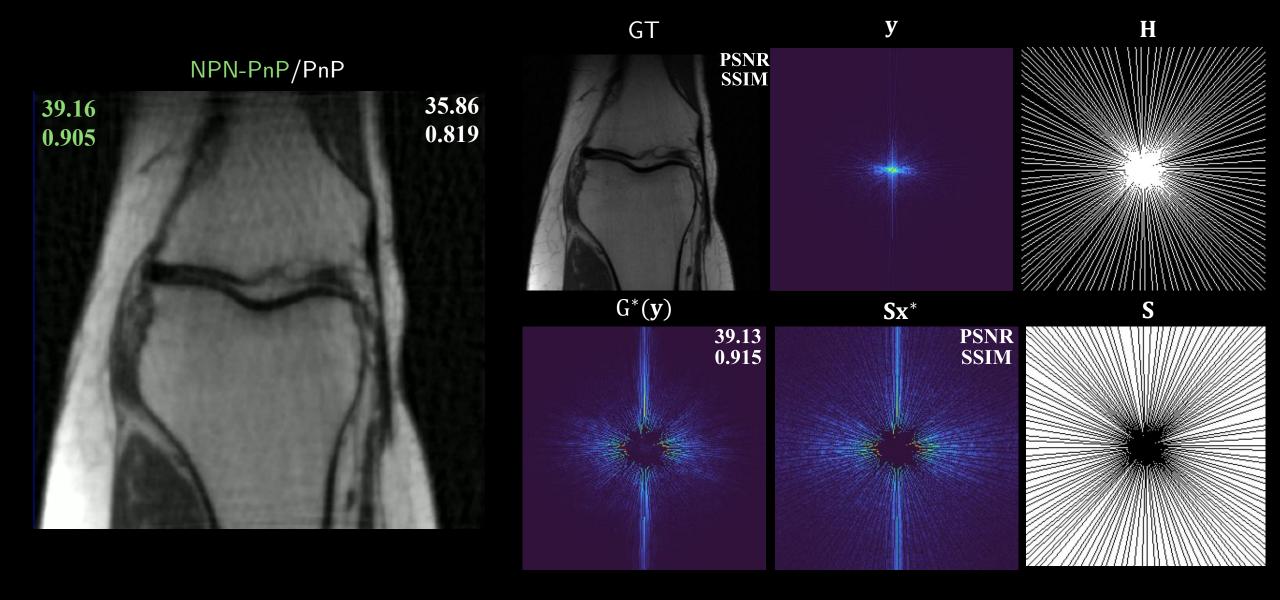
$$\rho \triangleq (1 + \delta) (\|I - \alpha (\mathbf{H}^T \mathbf{H} + \mathbf{S}^T \mathbf{S})\| + (1 + \Delta_M^S) \|\mathbf{S}\|)$$
Upper bound of G* estimation error



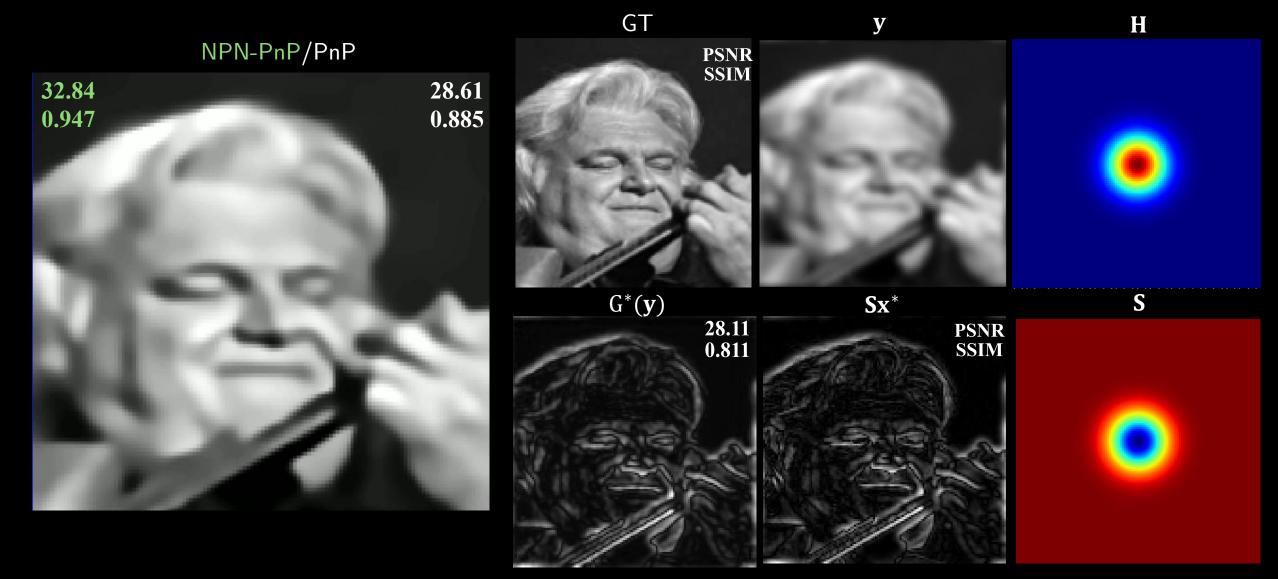
200

100

Results



Results



Results

Unrolling Models

Method	p/n	CIFAR-10		STL10	
Tyrotho G		PnP	Unrolling	PnP	Unrolling
Baseline	0.0	20.04	24.32	20.09	18.35
NPN	0.1	21.12	28.53	19.91	19.64
	0.3	21.07	28.75	21.14	20.23
	0.5	20.78	27.64	20.77	18.76
	0.7	20.09	26.73	20.31	18.45
	0.9	20.41	29.90	21.02	19.48

Improvements of up to 4 dB in Unrolling Models and generalization to data distributions shift at test-time

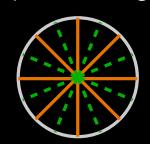
Compressed Sensing

Diffusion Models

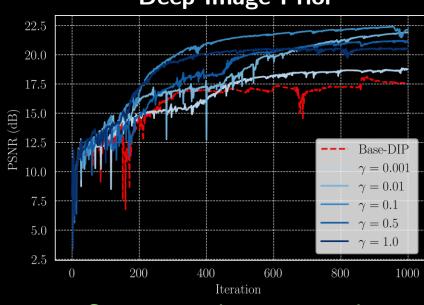
γ	NPN-DPS	NPN-DiffPIR	
0.0 (Base)	28.22	31.30	
10^{-5}	28.55	31.88	
10^{-4}	28.30	31.91	
10^{-3}	28.47	30.53	
10^{-2}	28.78	29.90	
0.1	30.06	28.98	
0.2	30.07	28.57	
0.5	29.90	28.00	

Improvements of ~1dB in different DM solvers

Computed Tomography

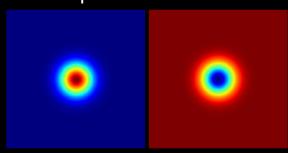


Deep Image Prior

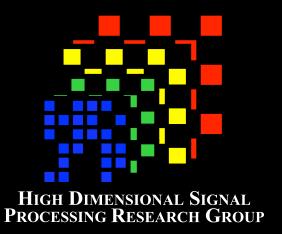


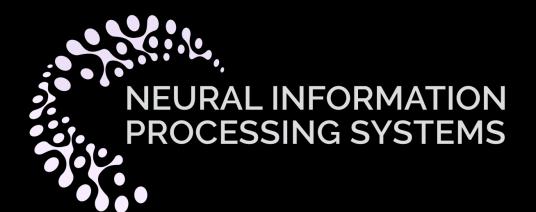
Convergence improvement in DIP and +4 PSNR gain

Super-Resolution



Thank You





Universidad Industrial de Santander

