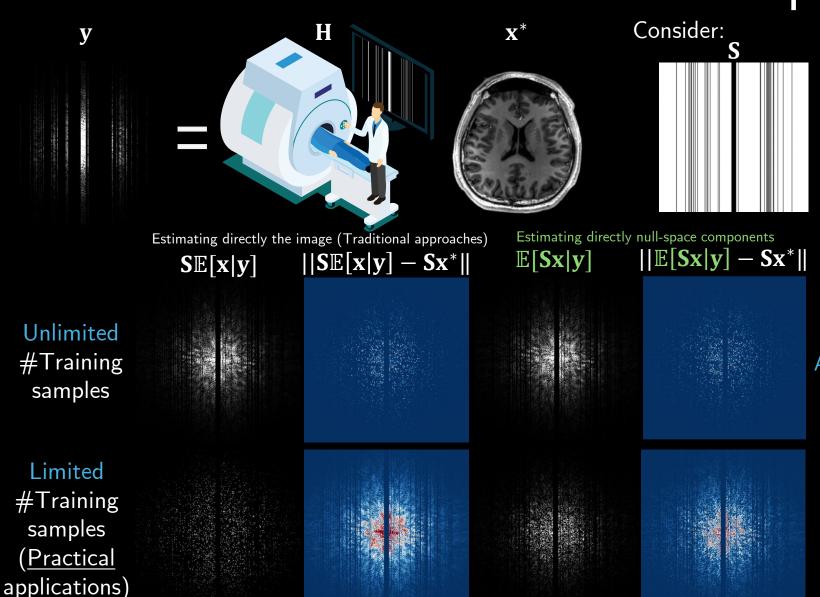
# NPN Regularization For Imaging Inverse Problems

Learning null-space components for regularizing inverse problems in imaging

## Inverse Problems and Null-Space



Can we recover  $\mathbf{S}\mathbf{x}^*$  (blind signal components to  $\mathbf{H}$ ) only from  $\mathbf{y}$ ?



Subset of Null-space

#### Conclusion

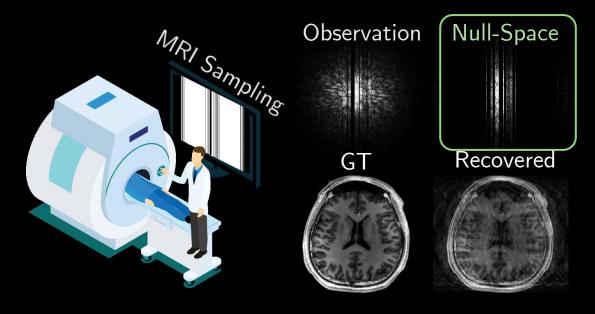
When the #Training samples is  $\underline{\text{limited}}$  Activistbetteintatiestimiate  $\underline{\mathbb{W}}[x][y]$   $\underline{\mathbb{E}}[Sx|y]$ 

We propose to estimate  $G^*(y) \approx Sx^*$ 

#### Learned Null-Space Regularizer

 $\phi(\mathbf{x}) = \|\mathbf{G}^*(\mathbf{y}) - \mathbf{S}\mathbf{x}\|$ Accurate estimation **only** with  $\mathbb{E}[\mathbf{S}\mathbf{x}|\mathbf{y}]$  **Main issue: High dimensionality of x**It can be used in any solver: Phy, DM,

## Inverse Problems and Null-Space



Solution on image prior

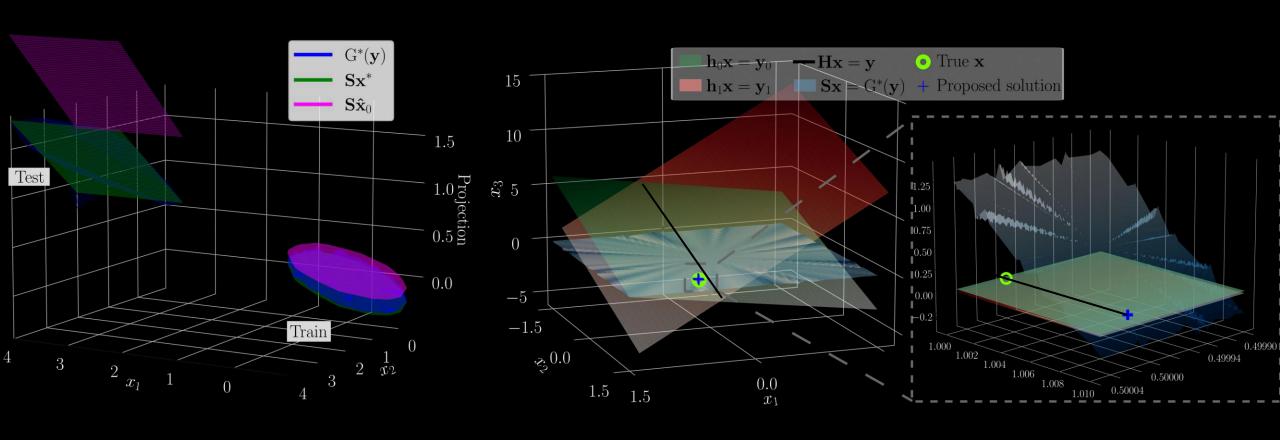
$$\hat{\mathbf{x}} = \underset{\tilde{\mathbf{x}}}{\operatorname{argmin}} \frac{1}{2} ||\mathbf{y} - \mathbf{H}\tilde{\mathbf{x}}||_{2}^{2} + \lambda h(\tilde{\mathbf{x}}) + \gamma \frac{1}{2} ||\mathbf{G}^{*}(\mathbf{y}) - \mathbf{S}\tilde{\mathbf{x}}||_{2}^{2}$$
Solution in range-
space
Solution in selected
null-space

 $\mathbf{S}\mathbf{x} \to \text{Null-Space components span}(\mathbf{S}^T) \subset \text{Null}(\mathbf{H})$ 

 $\mathbf{y}$   $G(\mathbf{y}) \approx \mathbf{S}\mathbf{x}^*$ 

We propose to learn a regularization over blind image components to the sensing matrix

## Null-Space Regularization



Low-dimensional learning provides better generalization

The regularization acts in a orthogonal direction to the data-fidelity

## Learning Null-Space Component





Ensuring orthogonality between **H** and **S** 

Fitting Null-Space component

Ensuring invertibility in the dataset subspace

Joint learning of **S** and **G** 

## Theoretical Advantages (PnP)

FISTA-PnP
$$\hat{\mathbf{x}} = \underset{\hat{\mathbf{x}}}{\operatorname{arg min}} \left| |\mathbf{y} - \mathbf{H}\tilde{\mathbf{x}}| \right|_{2}^{2} + \lambda h(\tilde{\mathbf{x}}) + \gamma \left| |\mathbf{G}^{*}(\mathbf{y}) - \mathbf{S}\tilde{\mathbf{x}}| \right|_{2}^{2} \rightarrow \mathbf{x}^{\ell+1} = \mathcal{D}(\mathbf{x}^{\ell} - \alpha \left( \mathbf{H}^{\mathsf{T}} \left( \mathbf{H} \mathbf{x}^{\ell} - \mathbf{y} \right) + \gamma \mathbf{S}^{\mathsf{T}} \left( \mathbf{S} \mathbf{x}^{\ell} - \mathbf{G}^{*} (\mathbf{y}) \right) \right)$$

#### Convergence improvement zone

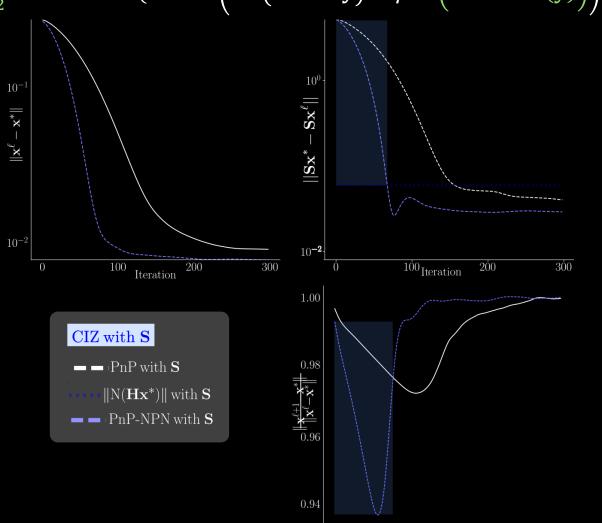
Iterations in which the null-space predictor outperforms projecting the iterate reconstruction in the null-space

$$\mathcal{L} = \left\{ \ell : \left| |G^*(\mathbf{y}) - \mathbf{S}\mathbf{x}^*| \right| < \left| |\mathbf{S}\mathbf{x}^{\ell} - \mathbf{S}\mathbf{x}^*| \right| \right\}$$

Th. 1: PnP-NPN Convergence: For  $\ell \in \mathcal{L}$ , the residual  $\|\mathbf{x}^{\ell+1} - \mathbf{x}^*\|$  decay linearly with rate

Small as  $\mathbf{H} \perp \mathbf{S}$ 

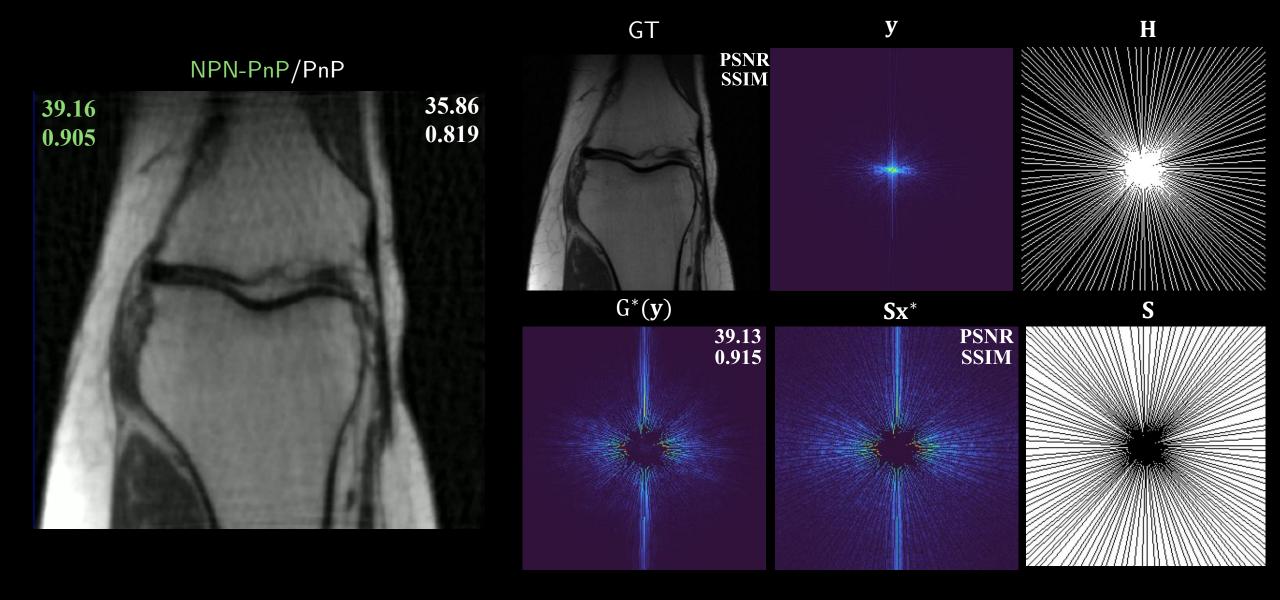
$$\rho \triangleq (1 + \delta) (\|I - \alpha (\mathbf{H}^T \mathbf{H} + \mathbf{S}^T \mathbf{S})\| + (1 + \Delta_M^S) \|\mathbf{S}\|)$$
Upper bound of G\* estimation error



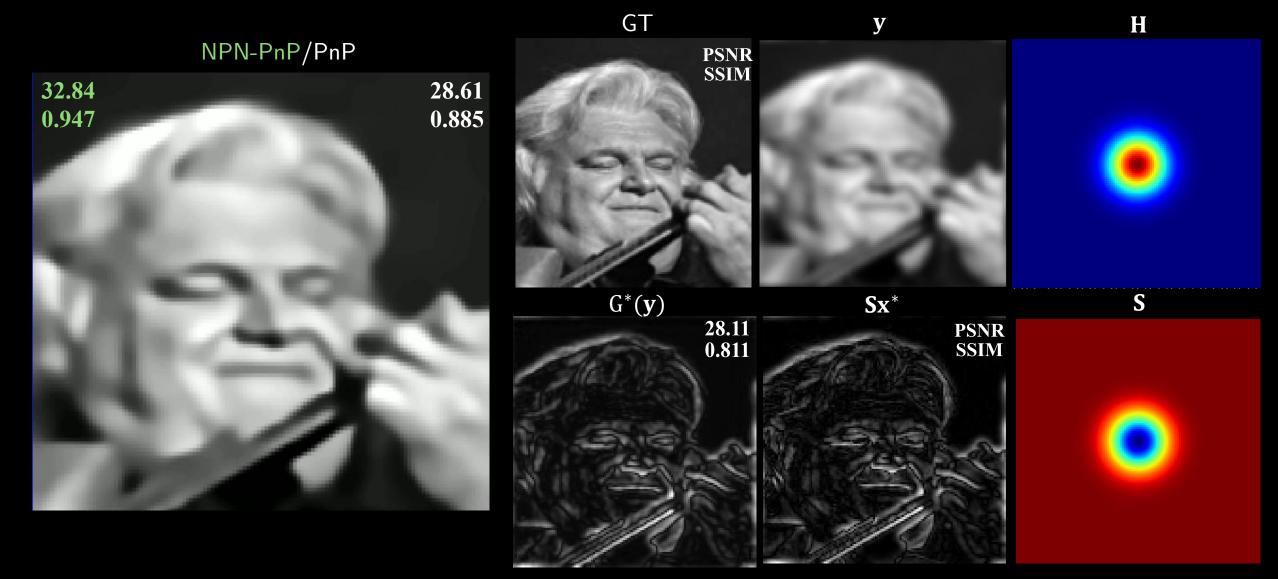
200

100

## Results



## Results



### Results

#### **Unrolling Models**

| Method    | p/n | CIFAR-10 |           | STL10 |           |
|-----------|-----|----------|-----------|-------|-----------|
| Tyrotho G |     | PnP      | Unrolling | PnP   | Unrolling |
| Baseline  | 0.0 | 20.04    | 24.32     | 20.09 | 18.35     |
| NPN       | 0.1 | 21.12    | 28.53     | 19.91 | 19.64     |
|           | 0.3 | 21.07    | 28.75     | 21.14 | 20.23     |
|           | 0.5 | 20.78    | 27.64     | 20.77 | 18.76     |
|           | 0.7 | 20.09    | 26.73     | 20.31 | 18.45     |
|           | 0.9 | 20.41    | 29.90     | 21.02 | 19.48     |

Improvements of up to 4 dB in Unrolling Models and generalization to data distributions shift at test-time

Compressed Sensing

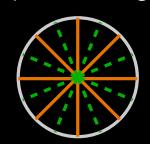


#### **Diffusion Models**

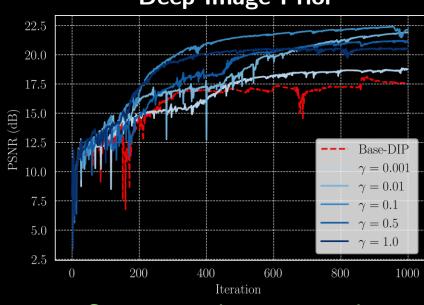
| $\gamma$   | NPN-DPS | NPN-DiffPIR |  |
|------------|---------|-------------|--|
| 0.0 (Base) | 28.22   | 31.30       |  |
| $10^{-5}$  | 28.55   | 31.88       |  |
| $10^{-4}$  | 28.30   | 31.91       |  |
| $10^{-3}$  | 28.47   | 30.53       |  |
| $10^{-2}$  | 28.78   | 29.90       |  |
| 0.1        | 30.06   | 28.98       |  |
| 0.2        | 30.07   | 28.57       |  |
| 0.5        | 29.90   | 28.00       |  |

Improvements of ~1dB in different DM solvers

#### Computed Tomography

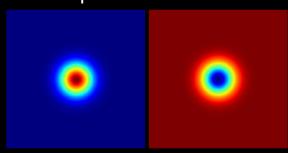


#### **Deep Image Prior**

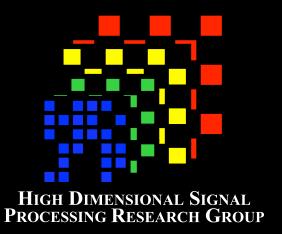


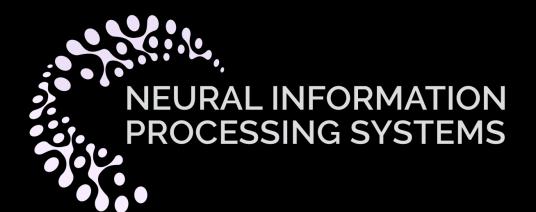
Convergence improvement in DIP and +4 PSNR gain

#### Super-Resolution



## Thank You





Universidad Industrial de Santander

