

Neural Mutual Information Estimation with Vector Copulas

Yanzhi Chen, Zijing Ou, Adrian Weller, Michael Gutmann

Background

Information-theoretic measures

Mutual information (MI)

$$\mathbb{I}(X;Y) = \int p(\mathbf{x}, \mathbf{y}) \log \frac{p(\mathbf{x}, \mathbf{y})}{p(\mathbf{x})p(\mathbf{y})} d\mathbf{x} d\mathbf{y}$$

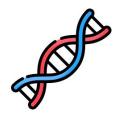
Differential entropy

$$\mathbb{H}[X] = -\int p(\mathbf{x}) \log p(\mathbf{x}) d\mathbf{x}$$

Information-theoretic measures

Mutual information (MI)

$$\mathbb{I}(X;Y) = \int p(\mathbf{x}, \mathbf{y}) \log \frac{p(\mathbf{x}, \mathbf{y})}{p(\mathbf{x})p(\mathbf{y})} d\mathbf{x} d\mathbf{y}$$


A fundamental metric for measuring statistical dependence

Differential entropy

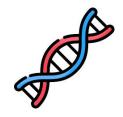
$$\mathbb{H}[X] = -\int p(\mathbf{x}) \log p(\mathbf{x}) d\mathbf{x}$$

Applications of MI

Identifying co-expressed genes

Explainability & Interpretability

Bayesian experimental design


Text-to-image alignment

"blue car"

Applications of MI

Identifying co-expressed genes

Explainability & Interpretability

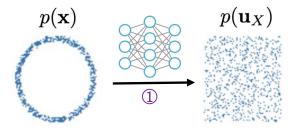
Bayesian experimental design

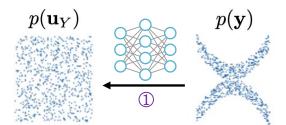
Text-to-image alignment

"blue car"

*However, MI remains very challenging to estimate in moderate dimensional spaces (d > 20)

MI estimation (hard)

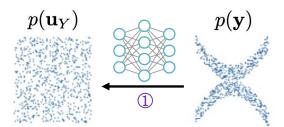



(easier)

Marginal distribution learning Dependence structure modeling

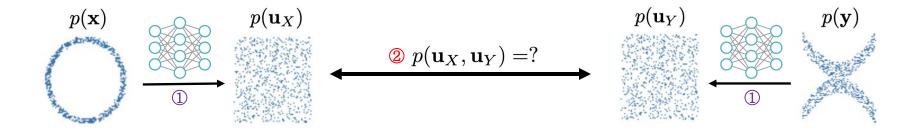
(easier)

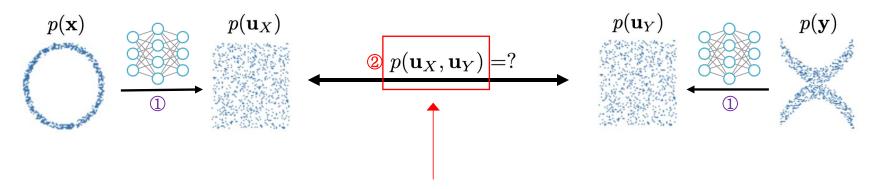
Marginal distribution learning



use two **flows** to transform the marginal distributions to **uniform** distributions

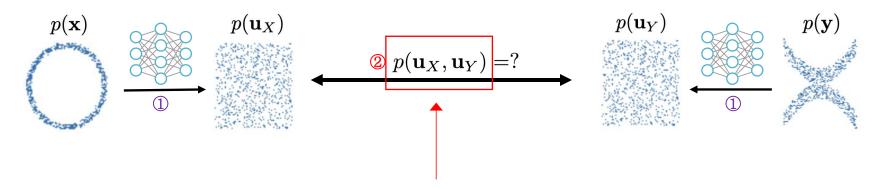
1 Marginal distribution learning




use two **flows** to transform the marginal distributions to **uniform** distributions

(much easier due to reduced dimensionality)

2 Dependence structure modeling



2 Dependence structure modeling

the **vector copula** it fully captures the **dependence structure** between X and Y

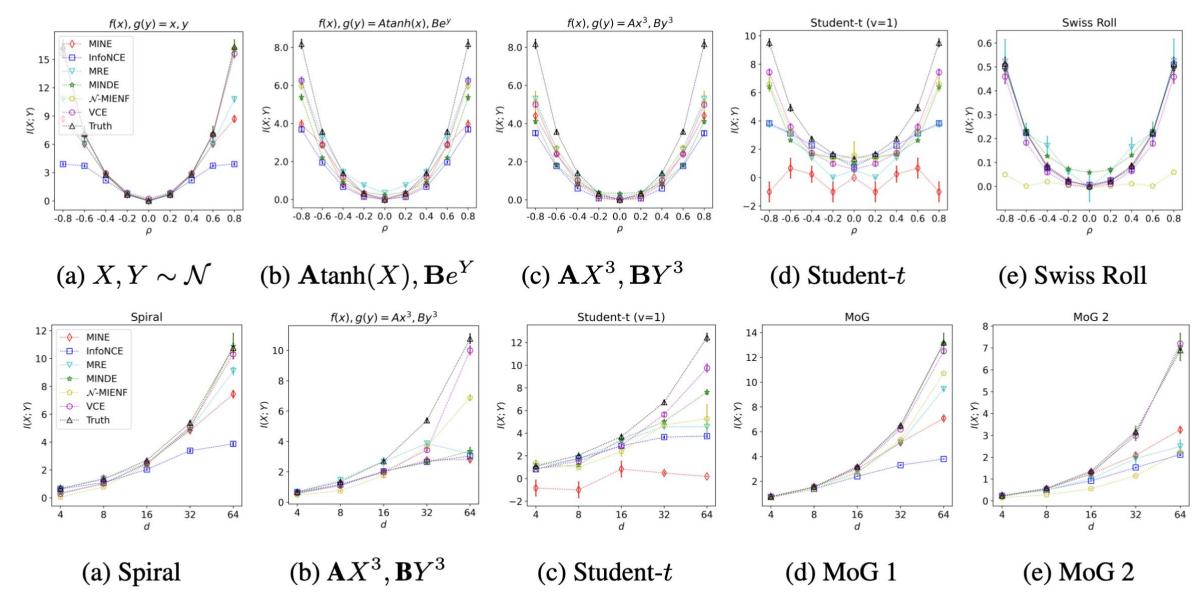
2 Dependence structure modeling

the **vector copula** it fully captures the **dependence structure** between X and Y

$$\mathbb{I}(X;Y) = -\mathbb{H}[p(\mathbf{u}_X, \mathbf{u}_Y)]$$

Experiments

Experiments


Benchmarks

- Extended BMI benchmarks
- High-dimensional correlated images
- Resampled text embeddings

Baselines


- MINE
- InfoNCE
- MRE (state-of-the-art discriminative estimator)
- N-MIENF
- MINDE (state-of-the-art generative estimator)
- VCE (proposed method)

Experiments - Extended BMI benchmarks

*VCE offers significant advantage in high-MI and high-dimensional settings

Experiments - Correlated images (256D)

(a) Gaussian plates

(b) Rectangles

Method	Gaussian Plates			Rectangles		
	$\overline{I(X;Y)=1}$	I(X;Y) = 3	I(X;Y) = 7	$\overline{I(X;Y)=1}$	I(X;Y)=3	I(X;Y) = 7
MINE	0.89 ± 0.07	2.86 ± 0.24	5.46 ± 0.27	0.81 ± 0.13	2.57 ± 0.26	5.39 ± 0.23
InfoNCE	0.86 ± 0.14	2.63 ± 0.13	3.83 ± 0.12	0.78 ± 0.17	2.49 ± 0.28	3.86 ± 0.15
MRE	1.23 ± 0.16	2.85 ± 0.21	5.91 ± 0.28	0.82 ± 0.24	2.56 ± 0.48	5.45 ± 0.31
\mathcal{N} -MIENF	0.74 ± 0.12	2.42 ± 0.16	3.85 ± 0.22	0.54 ± 0.13	0.76 ± 0.14	1.54 ± 0.11
VCE	$\boldsymbol{0.92 \pm 0.04}$	2.93 ± 0.12	$\textbf{6.53} \pm \textbf{0.36}$	$\boldsymbol{0.83 \pm 0.12}$	2.27 ± 0.23	5.02 ± 0.14

*VCE is either the best or very close to the champion

Experiments - Text embeddings (512D+)

	X	Y
1	(positive) I thought this was a wonderful way to spend time on	(positive) If you like original gut wrenching laughter you will like
2	(negative) So im not a big fan of Boll's work but then	(positive) This a fantastic movie of three prisoners who become famous

Method	$I(X;Y) \approx 2.1$	$I(X;Y) \approx 0.9$
MINE	1.83 ± 0.04	0.71 ± 0.05
InfoNCE	1.64 ± 0.09	0.70 ± 0.06
MRE	1.72 ± 0.07	1.23 ± 0.02
\mathcal{N} -MIENF	0.91 ± 0.05	0.43 ± 0.03
VCE	$\textbf{2.01} \pm \textbf{0.04}$	$\textbf{0.83} \pm \textbf{0.01}$

Method	$I(X;Y) \approx 1.5$	$I(X;Y) \approx 0.2$
MINE	$\textbf{1.42} \pm \textbf{0.04}$	0.18 ± 0.02
InfoNCE	1.41 ± 0.03	0.19 ± 0.04
MRE	1.23 ± 0.09	0.31 ± 0.09
\mathcal{N} -MIENF	0.73 ± 0.03	0.11 ± 0.02
VCE	1.22 ± 0.02	$\textbf{0.19} \pm \textbf{0.02}$

(a) Llama-3 13B

(b) BERT

*VCE offers less advantanges but it still provides very **robust estimates**

Summary

Summary

A new MI estimator based on the divide-and-conquer principle

Disentangling marginal distribution and dependence structure (i.e. the vector copula)

Achieving accurate and robust estimation across diverse data patterns and modalities