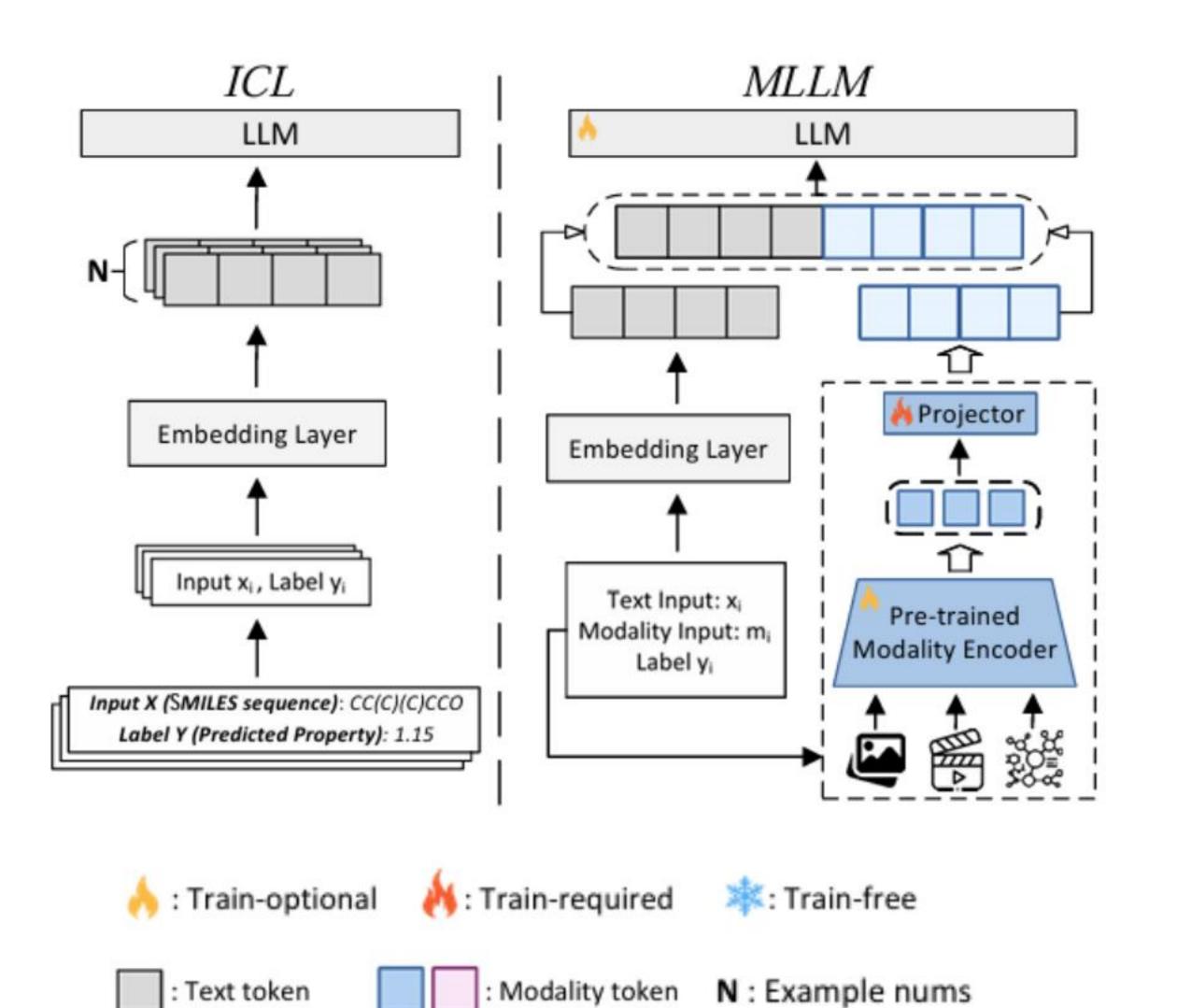


Can LLMs Reason Over Non-Text Modalities in a Training-Free Manner? A Case Study with In-Context Representation Learning

Tianle Zhang*, Wanlong Fang*, Jonathan Woo*, Paridhi Latawa, Deepak A. Subramanian, Alvin Chan.

NeurlPS 2025

Challenges of Text-Only LLMs in Leveraging Non-Text Modalities



Motivations:

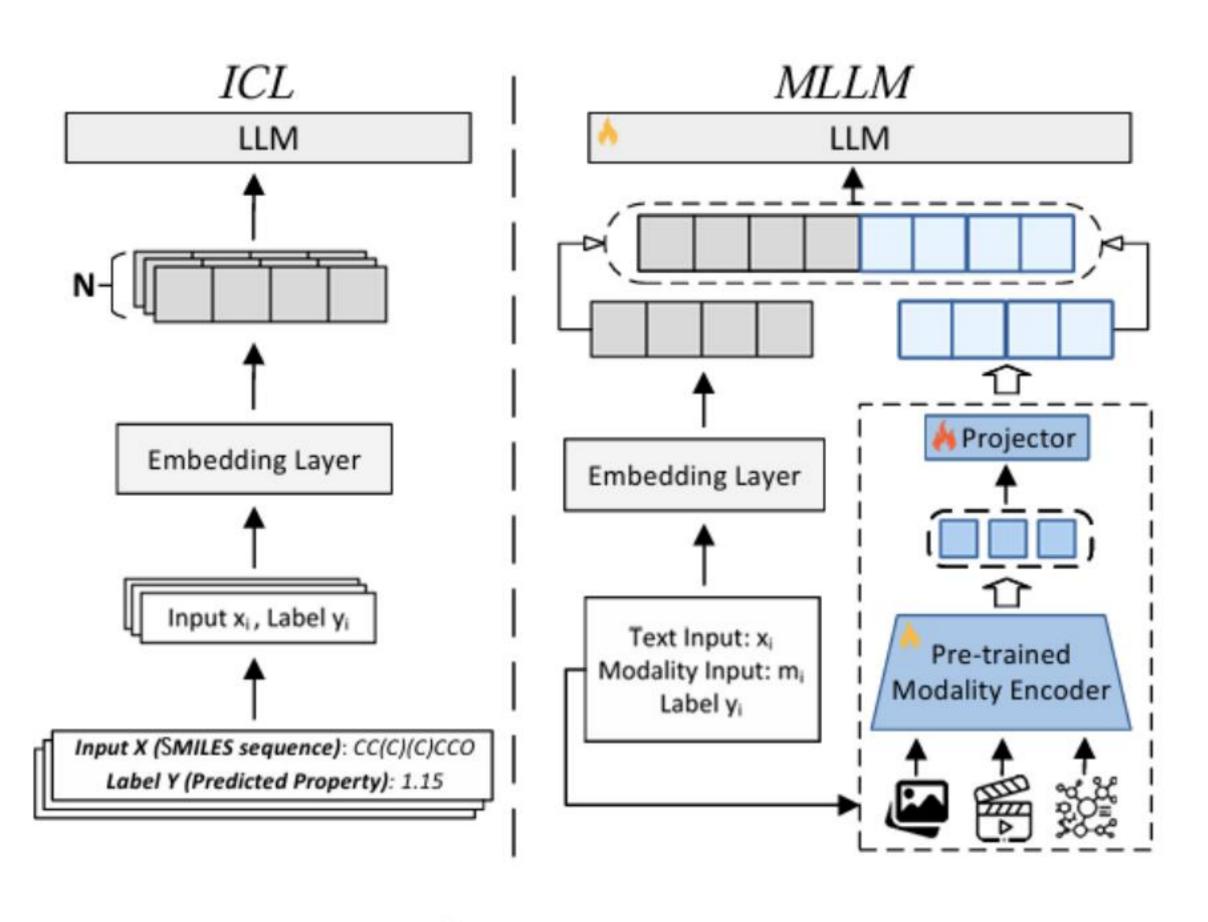
- Many domains such as molecules, proteins, vision, and speech rely on non-text data.
- Most multimodal methods rely on costly supervised training, limiting adaptation to new domains.

Current solutions

Multi-Modal Large Language Models:

- ✓ Capable of integrating diverse modalities.
- * Require additional and costly training.
 - -- even for lightweight projector tuning.

Challenges of Text-Only LLMs in Leveraging Non-Text Modalities



: Train-optional : Train-required : Train-free : Text token : Modality token : Example nums

Motivations:

- Many domains such as molecules, proteins, vision, and speech rely on non-text data.
- Most multimodal methods rely on costly supervised training, limiting adaptation to new domains.

Current solutions

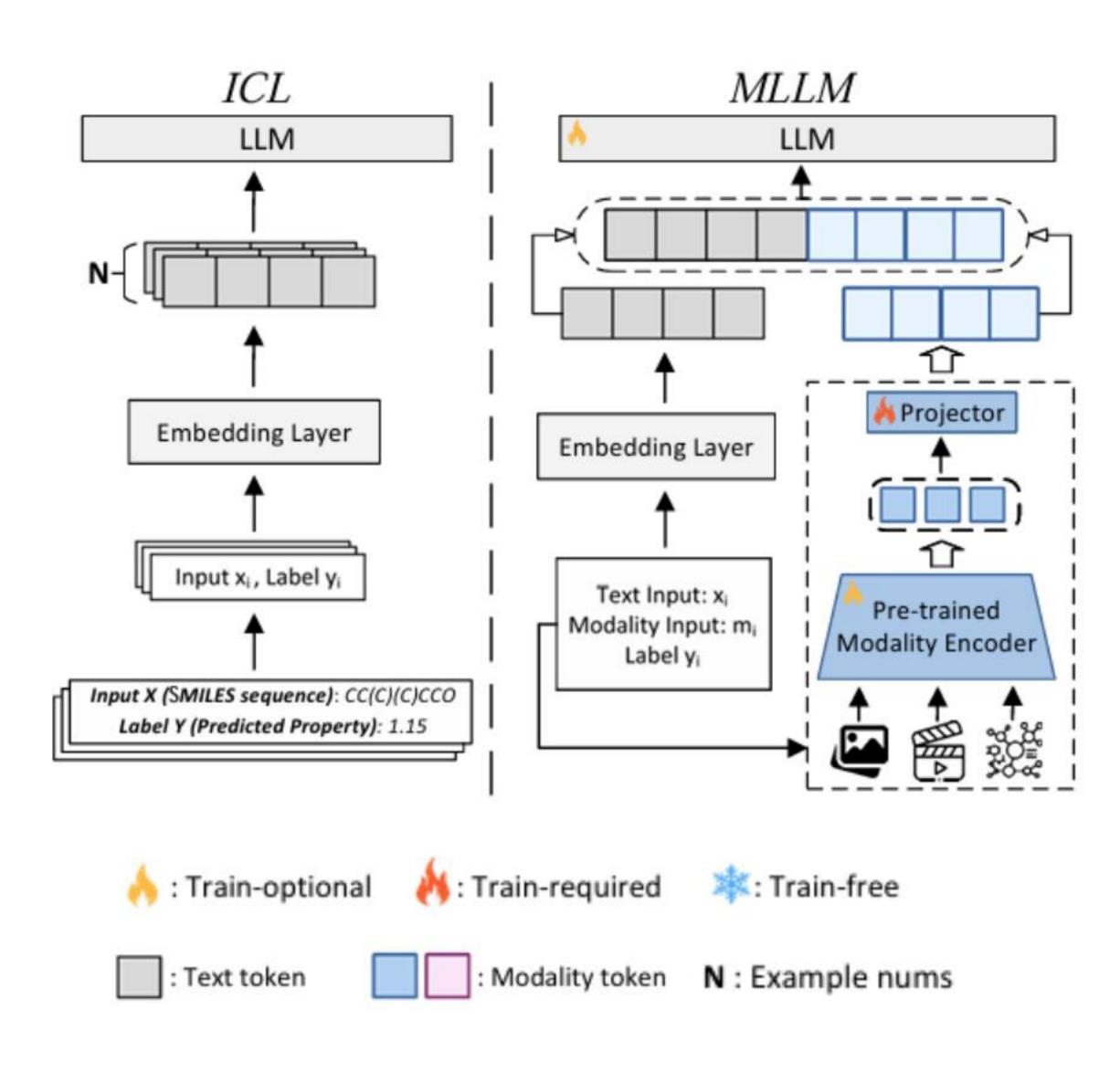
Multi-Modal Large Language Models:

- ✓ Capable of integrating diverse modalities.
- * Require additional and costly training.
 - -- even for lightweight projector tuning.

In-Context Learning:

- ✓ Training-free and data-efficient.
- * Restricted to **text-only** inputs.
 - -- cannot directly leverage non-text features.

Challenges of Text-Only LLMs in Leveraging Non-Text Modalities



Motivations:

- Many domains such as molecules, proteins, vision, and speech rely on non-text data.
- Most multimodal methods rely on costly supervised training, limiting adaptation to new domains.

Current solutions

Multi-Modal Large Language Models:

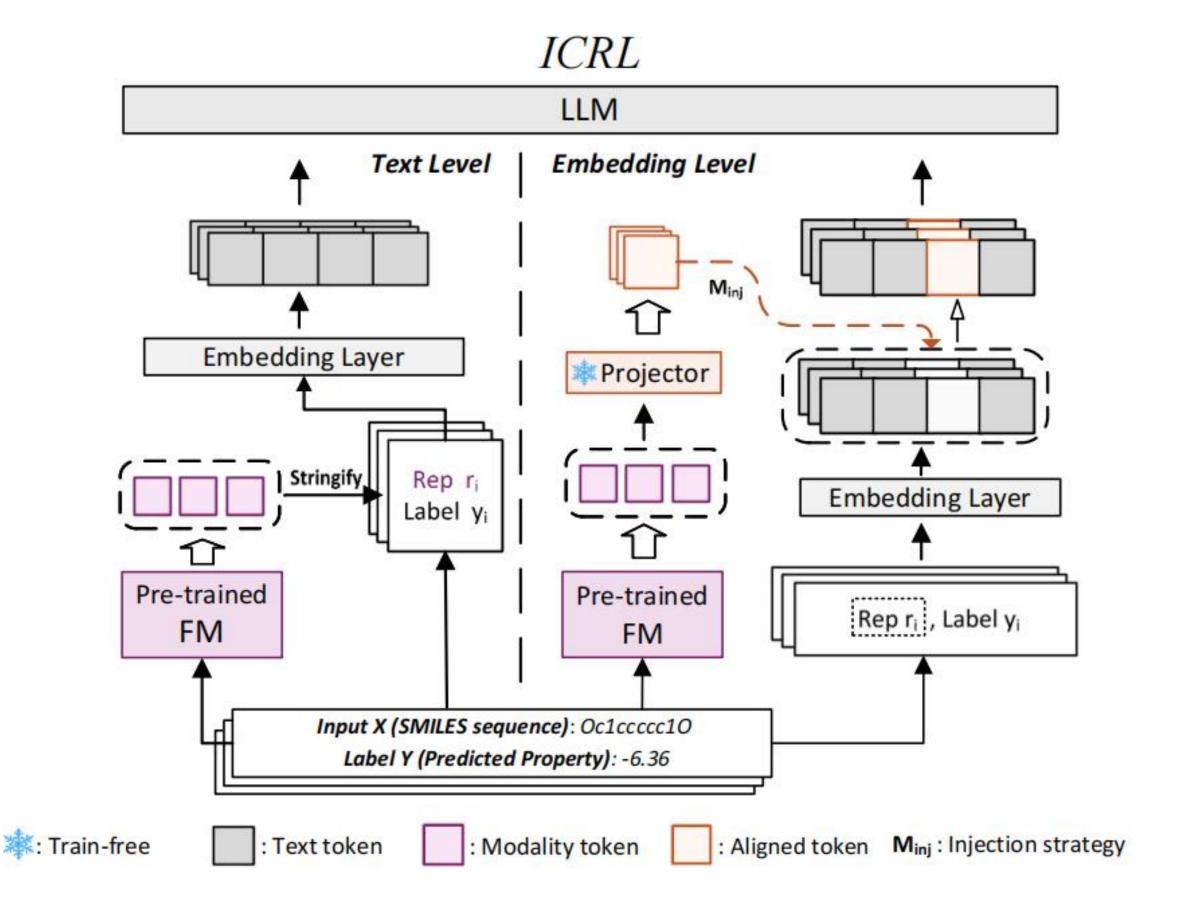
- ✓ Capable of integrating diverse modalities.
- * Require additional and costly training.
 - -- even for lightweight projector tuning.

In-Context Learning:

- ✓ Training-free and data-efficient.
- * Restricted to **text-only** inputs.
 - -- cannot directly leverage non-text features.

Can LLMs directly leverage non-text foundation models representations directly at inference time, without training?

ICRL: In-Context Representation Learning

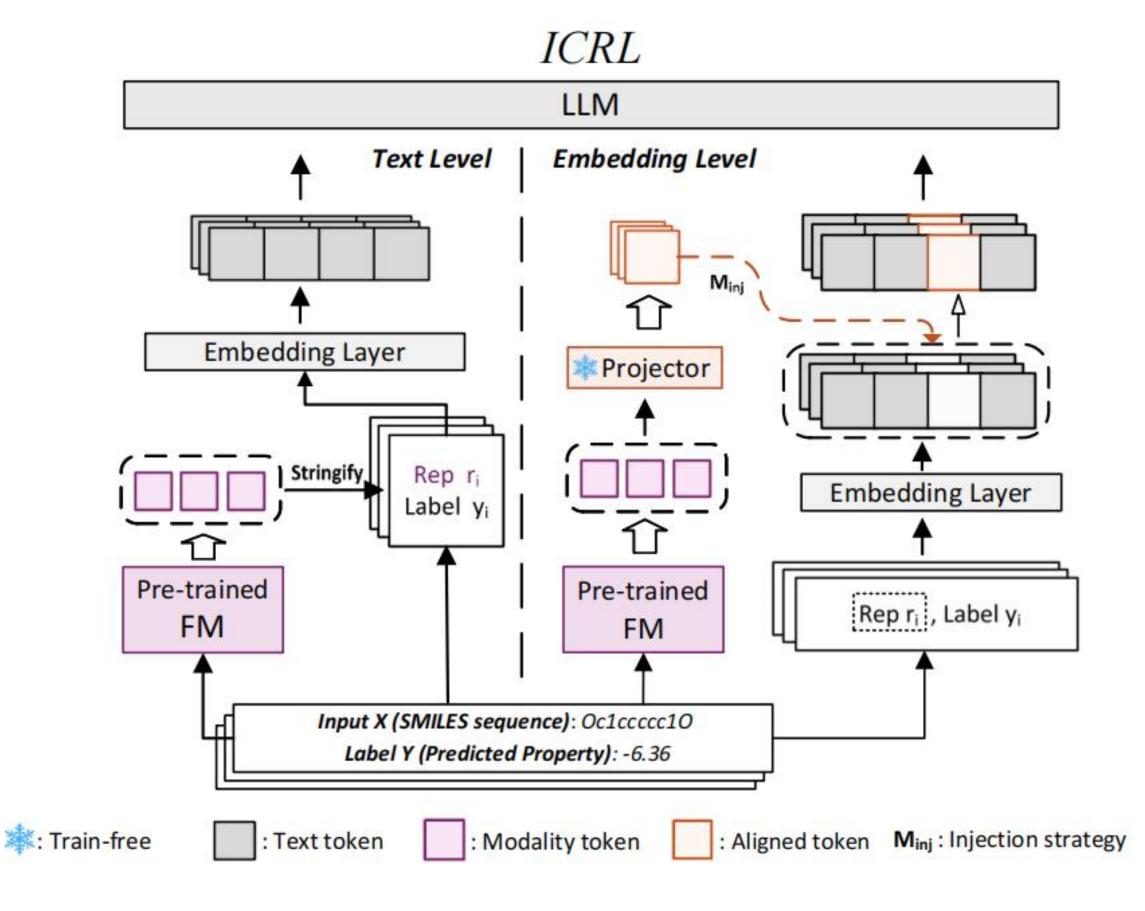


Two Levels of Representation Injection in ICRL

 Text-Level: FM feature → PCA (dim. reduction) → input as text → few-shot example → reasoning

```
Question: What is the Solubility of the drug molecule?
Molecular vector representation: [4.26, -6.16, ..., 1.32]
Answer: -0.258 Interpretable but context-inefficient.
```

ICRL: In-Context Representation Learning



Candidate Injection Strategies

- ightharpoonup Zero-Pad → pad FM features to match LLM dimension.
- Random Projection \rightarrow map with untrained linear layer.
- OT Alignment → Align the distribution of FM embeddings with the LLM embedding space via OT, using the token embeddings of SMILES text (OT-Embed) or PCA strings (OT-PCA) as the target distribution.

Two Levels of Representation Injection in ICRL

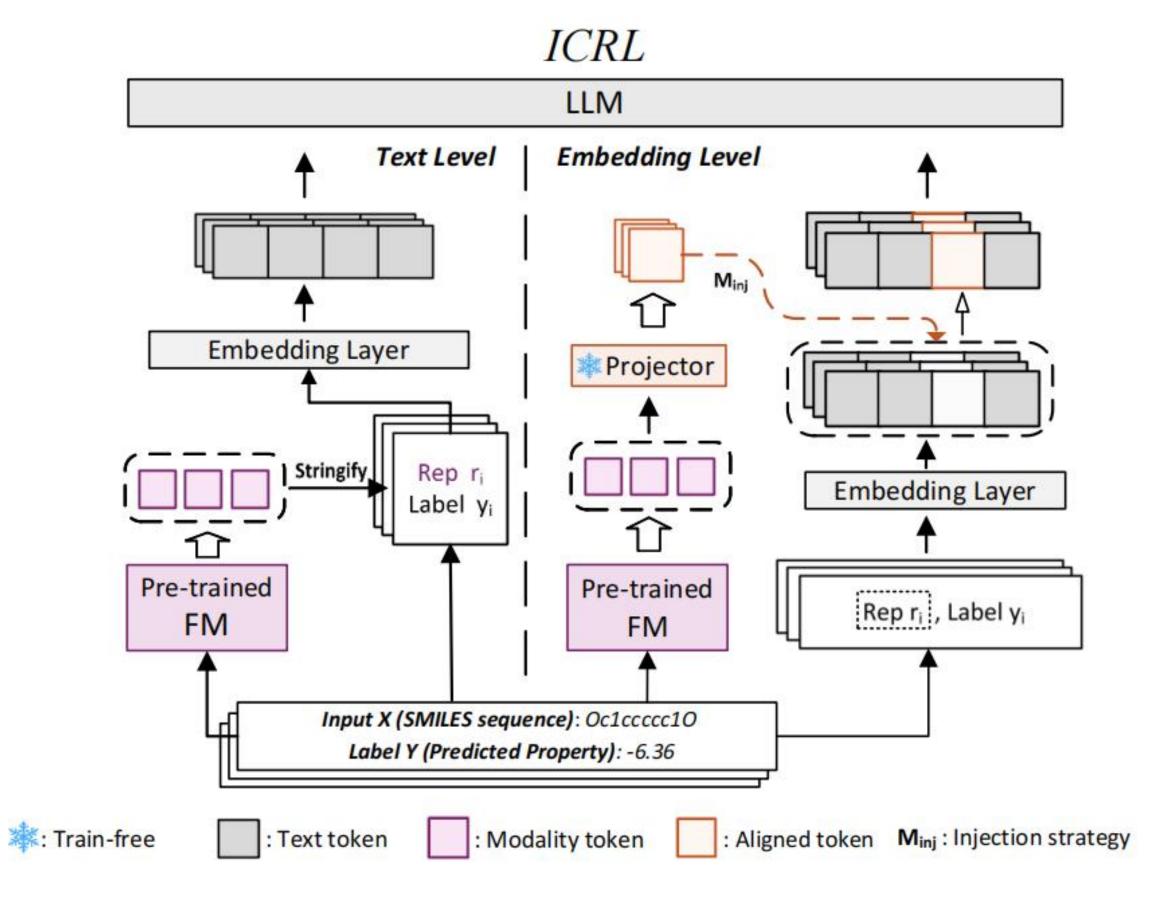
 Text-Level: FM feature → PCA (dim. reduction) → input as text → few-shot example → reasoning

```
Question: What is the Solubility of the drug molecule? Molecular vector representation: [4.26, -6.16, ..., 1.32]
Answer: -0.258 Interpretable but context-inefficient.
```

Embedding-Level: FM feature → random projector →
 Optimal Transport (OT) alignment → input as aligned
 token → few-shot example → reasoning

```
Question: What is the Solubility of the drug molecule?
Molecular vector representation: [REP]492[/REP]
Answer: -0.258 Requires alignment but token-efficient.
```

ICRL: In-Context Representation Learning



Candidate Injection Strategies

- ightharpoonup Zero-Pad → pad FM features to match LLM dimension.
- Random Projection → map with untrained linear layer.
- OT Alignment → Align the distribution of FM embeddings with the LLM embedding space via OT, using the token embeddings of SMILES text (OT-Embed) or PCA strings (OT-PCA) as the target distribution.

Two Levels of Representation Injection in ICRL

 Text-Level: FM feature → PCA (dim. reduction) → input as text → few-shot example → reasoning

```
Question: What is the Solubility of the drug molecule?
Molecular vector representation: [4.26, -6.16, ..., 1.32]
Answer: -0.258 Interpretable but context-inefficient.
```

Embedding-Level: FM feature → random projector →
 Optimal Transport (OT) alignment → input as aligned
 token → few-shot example → reasoning

```
Question: What is the Solubility of the drug molecule?
Molecular vector representation: [REP]492[/REP]
Answer: -0.258 Requires alignment but token-efficient.
```

Non-Trivial Results with Representations Only

- Text-level (PCA): Achieves performance comparable to, or better than, ICL.
- Embedding-level (OT): Compresses each FM feature into just 1 token, drastically reducing context usage while significantly improving over naive methods.

Lightweight Yet Powerful: How ICRL Extends ICL

ICRL Boosts ICL with Text Features

Dataset	Baseline	ICRL (Ours)							
	Text ICL	Text PCA+ICL	Zero-Pad+ICL	Ran-Noi+ICL	Embedding Ran-Pro+ICL	OT-Embed+ICL	OT-PCA+ICL		
ESOL	0.465 ±9.2e-4	0.455 ±1.2e-4	0.526 ±2.1e-4	0.540 ±1.6e-3	0.525 ±6.5e-5	0.508 ±1.7e-4	0.542 ±5.4e-4		
Caco2_Wang	0.411 ±1.3e-3	0.393 ±9.2e-4	0.410 ±4.6e-6	$0.420 \pm 1.1e-4$	$0.405~{\scriptstyle\pm1.6e\text{-}5}$	0.429 ±1.1e-3	0.394 ±5.7e-4		
AqSolDB	0.596 ±5.1e-5	0.549 ±3.2e-4	0.606 ±6.8e-6	0.597 ±1.1e-5	$\underline{0.600}$ ±2.4e-5	0.569 ±5.7e-4	0.589 ±3.9e-5		
LD50_Zhu	0.378 ±1.2e-5	0.356 ±1.9e-4	0.393 ±8.6e-6	0.379 ±5.4e-6	$0.392 \pm 7.3e-5$	$0.361~{\scriptstyle\pm1.2e\text{-}5}$	0.362 ±7.8e-5		
AstraZeneca	0.266 ±2.3e-5	0.227 ±3.1e-5	0.272 ±4.8e-5	0.267 ±2.1e-5	$0.269~{\scriptstyle\pm1.9e\text{-}5}$	0.269 ±2.1e-4	<u>0.271</u> ±6.6e-5		

> Overall gain:

Combining both **consistently improves** performance (e.g., OT-PCA achieves +16.6% on ESOL over text-only ICL.).

> Counterintuitive results:

With text features, even random noise outperforms the baseline, while zeropadding performs better in most cases.

Lightweight Yet Powerful: How ICRL Extends ICL

ICRL Boosts ICL with Text Features

Dataset	Baseline	eline ICRL (Ours)							
	Text ICL	Text PCA+ICL	Zero-Pad+ICL	Ran-Noi+ICL	Embedding Ran-Pro+ICL	OT-Embed+ICL	OT-PCA+ICL		
ESOL	0.465 ±9.2e-4	0.455 ±1.2e-4	0.526 ±2.1e-4	0.540 ±1.6e-3	0.525 ±6.5e-5	0.508 ±1.7e-4	0.542 ±5.4e-4		
Caco2_Wang	0.411 ±1.3e-3	0.393 ±9.2e-4	0.410 ±4.6e-6	$0.420 \pm 1.1e-4$	$0.405~{\scriptstyle \pm 1.6e\text{-}5}$	0.429 ±1.1e-3	0.394 ±5.7e-4		
AqSolDB	0.596 ±5.1e-5	0.549 ±3.2e-4	0.606 ±6.8e-6	0.597 ±1.1e-5	$\underline{0.600}$ ±2.4e-5	0.569 ±5.7e-4	0.589 ±3.9e-5		
LD50_Zhu	0.378 ±1.2e-5	0.356 ±1.9e-4	0.393 ±8.6e-6	0.379 ±5.4e-6	$0.392 \pm 7.3e-5$	0.361 ±1.2e-5	0.362 ±7.8e-5		
AstraZeneca	0.266 ±2.3e-5	0.227 ±3.1e-5	0.272 ±4.8e-5	0.267 ±2.1e-5	$0.269 \pm 1.9e\text{-}5$	0.269 ±2.1e-4	$0.271 \pm 6.6e-5$		

> Overall gain:

Combining both **consistently improves** performance (e.g., OT-PCA achieves +16.6% on ESOL over text-only ICL.).

> Counterintuitive results:

With text features, even random noise outperforms the baseline, while zeropadding performs better in most cases.

ICRL vs. Costly Training

Method	Type	Resource	Training Time	ESOL (RMSE)	Lipo (RMSE)	Avg
MolecularGPT [36]	I-FT	4×A800-80G	<1 day	1.471	1.157	1.314
GIMLET [67]	S-PT+FT	2–4 GPUs	~ 1 day	1.132	1.345	1.239
SELFormer [64]	PT	2×A5000	\sim 2 weeks	1.357	3.192	2.275
	PT + FT	2×A5000	\sim 2 weeks	0.682	1.005	0.844
GPT-MolBERTa [5]	PT + FT	2-4 GPUs	\sim 2 weeks	0.477 ± 0.01	0.758 ± 0.01	0.612
OT-PCA (ours)	Training-free	CPU only	~2 sec	1.140±0.01	1.349±0.01	1.245
OT-PCA + ICL (ours)	Training-free	CPU only	\sim 2 sec	1.094 ± 0.01	1.277 ± 0.01	1.186

> Better performance-cost trade-off:

While falling short of full PT+FT performance, ICRL delivers comparable or even superior results to most lightweight training methods, with only a ~2 s CPU-based alignment step required.

Value of the Study

> Training-Free Multimodal Reasoning

-- Introduces a framework that enables text-only LLMs to reason over non-text representations without any retraining.

> Cross-Modality Generalization

-- Demonstrates that even **frozen** LLMs can **generalize** across modalities through contextual reasoning alone, revealing their latent representational flexibility.

> Scalable and Efficient Integration

-- Provides a **lightweight**, **CPU-based** approach to multimodal alignment that completes within seconds, making it practical for resource-limited or retraining-impractical domains.

Thank You!

Code: https://github.com/ztlmememe/LLMxFM_ICRL

Paper Link: https://arxiv.org/abs/2509.17552