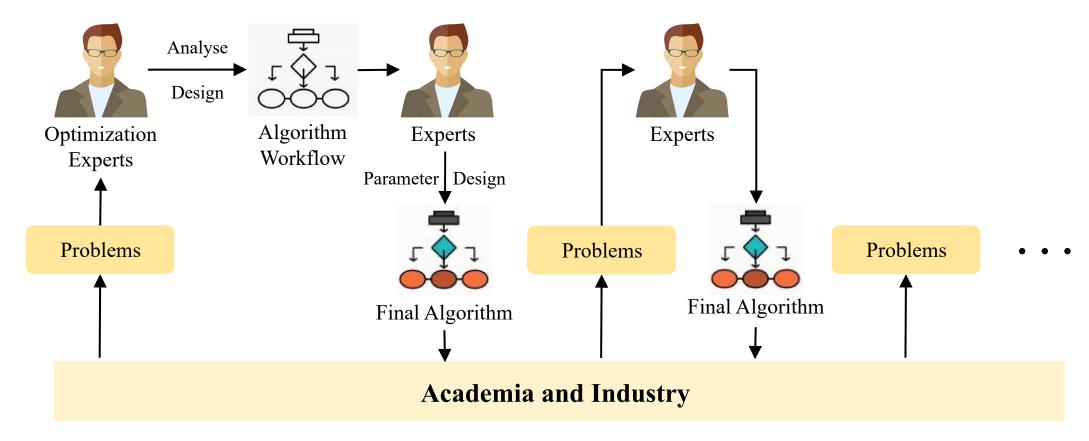


DesignX: Human-Competitive Algorithm Designer for Black-Box Optimization

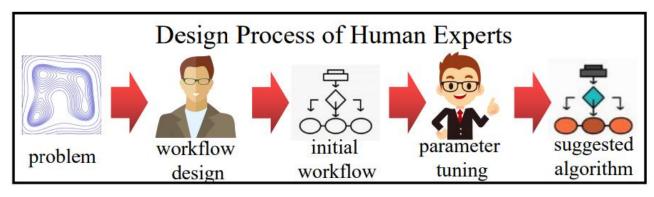
Hongshu Guo, Zeyuan Ma, Yining Ma, Xinglin Zhang, Wei-Neng Chen, Yue-Jiao Gong

Background: Existing Problem Solving Process



- > The huge number of optimization problems in the world require a huge number of experts to handle;
- ➤ We need an automatic generalizable algorithm design and configuration framework!!!

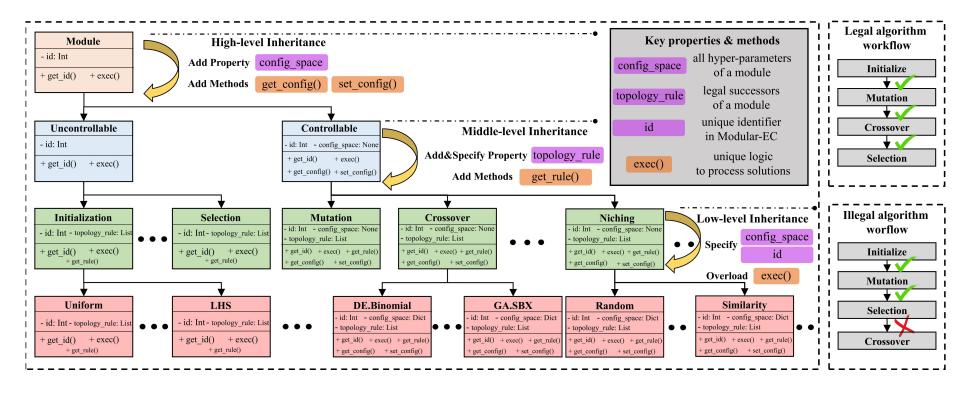
Motivation





- > By integrating algorithm modularization system and Deep RL, Agent-1 achieves automatic algorithm design;
- ➤ By using Deep RL-based generalizate algorithm configuration framework Agent-2, algorithms with various different structures can be uniformly controlled.

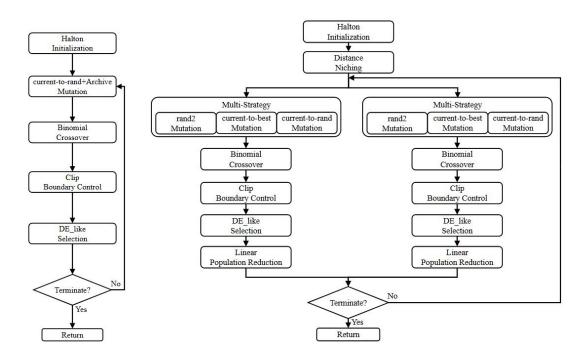
Modular-EC



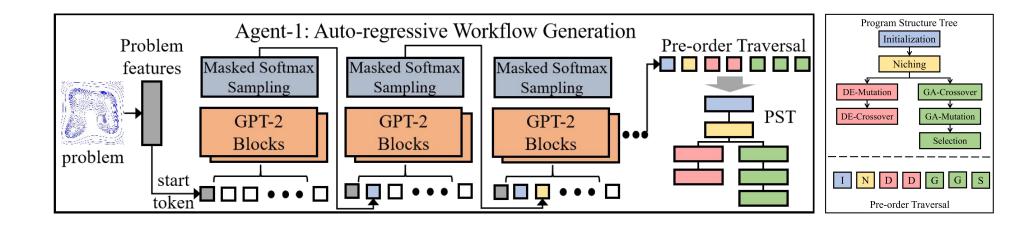
- ➤ We propose Modular-EC, a Polymorphism system via multiple levels of Python inheritance;
- ➤ Module ids are assigned to identify different modules, uniform action space is achieved by config_space attribute;
- > Topological rules between low-level classes are designed to ensure legal algorithm workflow.

Modular-EC

- ➤ Modular-EC maintains 10 module types: INITIALIZATION, MUTATION, CROSSOVER, Other_UPDATE, BOUNDARY_CONTROL, SELECTION, NICHING, INFORMATION_SHARING, RESTRT_STRATEGY, POPULATION_REUCTION;
- ➤ Over 100 module variants covering commonly used techniques in existing EC literature;
- This results in millions of possible algorithm workflows, significantly enhancing the expressiveness of Modular-EC.

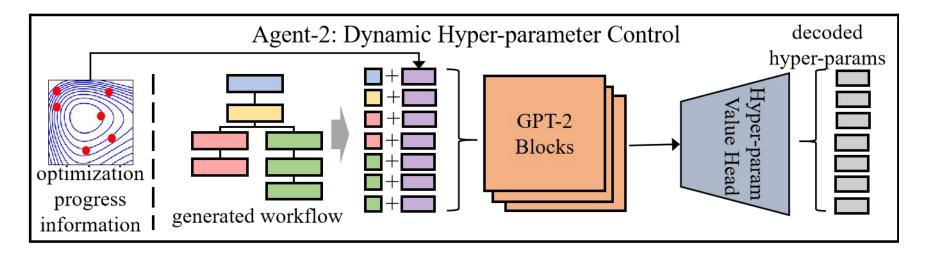


Dual-agent Algorithm Design System: Agent-1



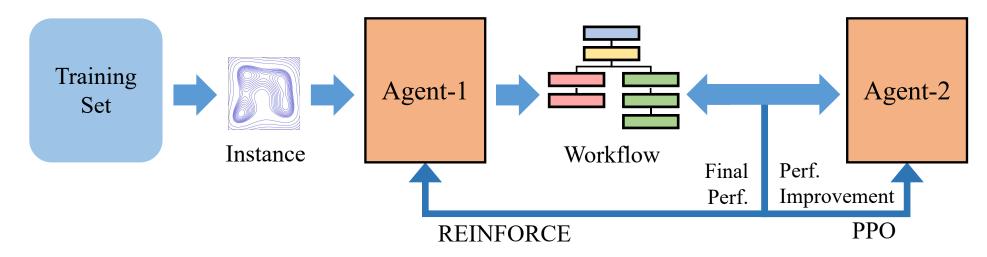
- ➤ Use Exploratory Landscape Analysis (ELA) to calculate the problem features from sampling;
- ➤ Take the ELA feature embeddings as start token, Agent-2 selects the token of the next module (action) and constructs the preorder traversal module sequence auto-regressively using GPT-2 based attention network. Turn the sequence into a program structure tree;
- Masks are generated based on the topological rules of the modules to ensure that only legal subsequent modules will be sampled.

Dual-agent Algorithm Design System: Agent-2



- ➤ Based on the algorithm workflow generated by Agent-1;
- Fitness Landscape Analysis (FLA) is adopted for optimization progress information. Combining the information, module id and positional encoding, Agent-2 uses GPT-2 based self-attention to generate proper hyper-parameters for each controllable modules (action);
- ➤ The hyper-parameters are then assigned to the algorithm modules and boost the performance.

Dual-agent Algorithm Design System: Training



- ➤ Model the algorithm construction process and algorithm configuration during optimization as MDPs;
- ➤ Workflows are generated by Agent-1 for each instance sampled from the set, then Agent-2 controls the workflows during optimization;
- Rewards are calculated based on the optimization process and the found optimal solution, we use REINFORCE to train Agent-1 and PPO for Agent-2.

$$\mathcal{J}(\phi, \theta) = \mathbb{E}_{p \sim \mathcal{D}_{train}} \left[\sum_{t=1}^{T} r_t \right] = \frac{1}{|\mathcal{D}_{train}|} \sum_{i=1}^{|\mathcal{D}_{train}|} \sum_{t=1}^{T} r_t$$

Experiment Setup:

Baselines: -

Training dataset: A large-scale training set with 9600 instances.

In-Dsitribution Test Set: A large-scale testing set with 3200 instances.

Out-Of-Distribution Test Sets: Three realistic optimization benchmarks: Protein-Docking, HPO-B and UAV Path Planning.

Training Settings: Agent-1: REINFORCE, Agent-2: PPO; both 1e-4 learning rate in 100 epochs

before 00: GA, PSO, DE

00-10: CMAES, FIPSO, SaDE, CLPSO, JADE

10-20: CoDE, IPSO, SHADE, LM-CMA-ES, GLPSO

after 20: MadDE, jDE21, MMES, NL-SHADE-LBC

MetaBBO: GLHF, DEDQN, GLEET

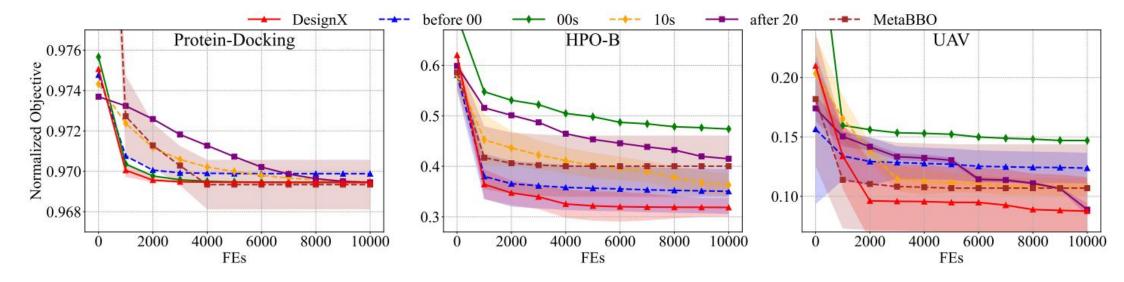
> In-Dsitribution Test:

Table 1: The in-distribution generalization performance in terms of absolute optimization performance results on \mathcal{D}_{test} . The best is labeled in green and the second best is labeled in red.

	before 00	00s	10s	after 20	MetaBBO	DesignX
FI	6.60E+00	1.64E+00	1.27E+00	5.32E+00	2.80E+00	2.89E-01
MAH, 50D, 30000 FEs	±3.74E+00 +	±1.64E+00 +	±4.41E-01 +	±3.70E+00 +	±0.00E+00 +	±3.93E-01
F79	2.98E+00	3.70E+00	5.38E+00	1.81E+00	9.95E-01	5.68E-02
UAH, 5D, 50000 FEs	±9.95E-01 +	±1.71E+00 +	±4.05E-01 +	±1.83E-01 +	±0.00E+00 +	±1.17E+00
F125	1.39E-03	3.50E-06	1 48F-04	1.69E-05	1.08E-04	4.81E-07
UAH, 10D, 40000 FEs	±1.38E-03 +	±3.50E-06 +	±1.33E-04 +	±7.99E-06 +	±0.00E+00 +	±2.66E-07
F154	1.35E±03	1.44F±03	1.38E+03	1.46E+03	5.47E+02	6.99E+02
UAH, 50D, 10000 FEs	±2.26E+02 +	±3.45E+02 +	±2.40E+02 +	±6.17E+02 +	±0.00E+00	±7.45E+01
F211	6.55E-01	8 04E-01	2.64E-01	1.28E-01	1.59E-01	7.28E-02
MAH, 5D, 40000 FEs	±2.92E-01 +	±6.99E-01 +	±9.96E-02 +	±2.43E-02 +	±0.00E+00 +	±6.56E-02
F240	6.39E+00	8.72E+00	8.24E+00	3.97E+00	2.05E+00	1.27E-01
MWL, 20D, 20000 FEs	±4.25E+00 +	±1.71E+00 +	±2.19E+00 +	±3.31E+00 +	±0.00E+00 +	±2.99E+00
F326	1.10E+00	1.15E+00	2.47E+00	7.66E-01	1.22E+00	5.84E-01
UAL, 10D, 40000 FEs	±1.22E-01 +	±4.53E-01 +	±4.64E-01 +	±5.10E-02 +	±0.00E+00 +	±1.66E+00
F411	2.50E-01	4 07E-01	2.68E-01	1.28E-01	1.87E-01	7.91E-02
UAL, 10D, 50000 FEs	±9.51E-02 +	±9.27E-02 +	±7.41E-02 +	±1.11E-02 +	±0.00E+00 +	±4.83E-02
F545	2.98E+00	1.49E+00	3.36E+00	8.41E-01	1.99E+00	2.61E-08
UWL, 5D, 40000 FEs	±9.94E-01 +	±4.97E-01 +	±6.23E-01 +	±1.54E-01 +	±0.00E+00 +	±6.48E-01
F1045	7.53E+02	4.20E+02	2.29E+02	1.71E+02	9.21E+02	1.67E+02
MWH, 10D, 40000 FEs	±1.68E+00 +	±1.47E+02 +	±6.06E+01 +	±1.41E+01 +	±0.00E+00 +	±1.06E+02
F1139	1.16E+01	3.95E+00	8.90E+00	2.67E+00	1.19E+01	1.39E-04
MAH, 10D, 50000 FEs	±1.00E+01 +	±1.67E+00 +	±1.54E+00 +	±1.15E+00 +	±0.00E+00 +	±1.47E+00
F1200	7.47E+00	1.14E+00	1.15E+00	1.33E+01	1.27E+00	1.09E+00
MAL, 50D, 40000 FEs	±6.29E+00 +	±7.00E-03 +	±2.56E-02 +	±1.22E+01 +	±0.00E+00 +	±2.12E-02
F1556	3 99E+02	2.03E+02	2.73E+01	1.48E+01	9.45E+00	1.01E+01
MAH, 10D, 40000 FEs	±3.75E+02 +	±1.76E+02 +	±7.63E+00 +	±7.13E-01 +	±0.00E+00	±1.13E+02
F1653	2.55E±01	2.53E+01	2.72E+01	1.85E+01	1.69E+01	1.54E+01
MAH, 20D, 10000 FEs	±1.53E+00 +	±7.11E-01 +	±7.28E-01 +	±2.56E+00 +	±0.00E+00 +	±3.47E+00
F1687	8 98E±00	2.07E±01	4.49E-01	2 94E+01	1.94E+00	2.24E-02
MAL, 50D, 40000 FEs	±6.60E+00 +	±1.07E+01 +	±2.38E-01 +	±2.81E+01 +	±0.00E+00 +	±9.09E+00
F2068	3.79E+01	2.32E+00	1.46E+01	1.65E+01	3.72E+01	5.16E-01
MWH, 20D, 20000 FEs	±6.53E+00 +	±1.13E-01 +	±1.40E+01 +	±1.41E+01 +	±0.00E+00 +	±1.06E+01
F2390	3 93E±00	2.78E+00	6.34E+00	1.54E+00	2.04E+01	1.85E-03
MAL, 10D, 30000 FEs	±2.15E+00 +	±0.00E+00 +	±9.03E-01 +	±1.10E+00 +	±0.00E+00 +	±2.45E+00
F2473	1.10E+00	3.98E-01	8.72E-01	6.69E-01	1.42E-01	1.63E-01
MAL, 10D, 20000 FEs	±9.06E-02 +	±6.88E-02 +	±1.80E-02 +	±2.53E-01 +	±0.00E+00	±1.59E-01
F2895	1.90E+01	4.34E+00	1.18E+01	4.23E+00	4.98E+00	1.99E+00
MWL, 10D, 50000 FEs	±3.88E+00 +	±1.66E+00 +	±5.35E+00 +	±5.26E-01 +	±0.00E+00 +	±3.34E+00
F2986	4.37E+02	4.93E+02	1.60E+02	2.51E+03	1.01E+02	8.90E+01
MAL, 50D, 10000 FEs	±1.71E+02 +	±3.74E+02 +	±6.45E+01 +	±2.42E+03 +	±0.00E+00 +	±2.65E+01
Normalized Averaged	2.94E-01	1.96E-01	1.54E-01	1.46E-01	1.32E-01	8.26E-02
Objective	±1.01E+00 +	±1.62E+00 +	±2.61E-01 +	±2.35E-01 +	±7.36E-01 +	±1.75E-01

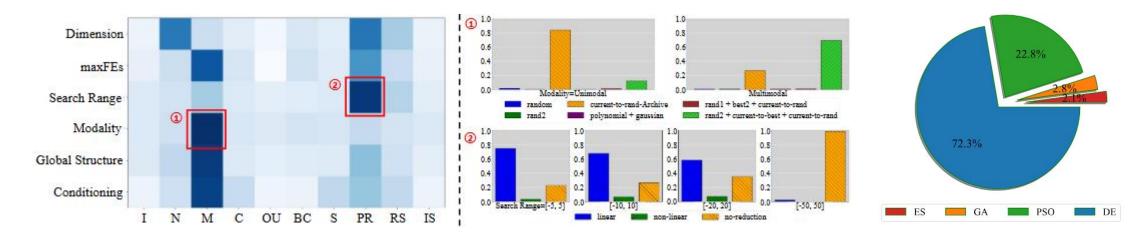
- The human-crafted BBO optimizers achieve progressive advancement through the expert-level designs proposed over the past decades.
- ➤ The optimization performance of DesignX surpasses both MetaBBO and hand-crafted BBO baselines.

> Out-Of-Distribution Test:



- ➤ DesignX generally shows superior optimization behavior to human-crafted optimizers from different decades, designing desirable optimizers robustly for diverse realistic problems it never saw during training
- DesignX consistently outperforms MetaBBO approaches, which demonstrates the novelty of our proposed bi-agent algorithm design system.

➤ <u>In-Depth Analysis:</u>



- ➤ DE Mutation and Population_Reduction shows more importance while Initialization strategies has very limited impact on the final performance;
- For unimodal problem, it smartly choose greedy-fashion mutation operators to reinforce the exploitation. Population Reduction is an effective mechanism to upgrade an optimizer's local search ability.
- ➤ The DE-related algorithm sub-modules is primarily considered by DesignX to achieve aforementioned robust optimization performance.

Thanks for Listening!

