

Differentiable Decision Tree via "ReLU+Argmin" Reformulation

39th Conference on Neural Information Processing Systems (NeurIPS 2025)

Spotlight Paper

Presenter: Qiangqiang Mao

Authors: Mao Q., Ren J., Wang Y., Zou C., Zheng J. and Cao Y.

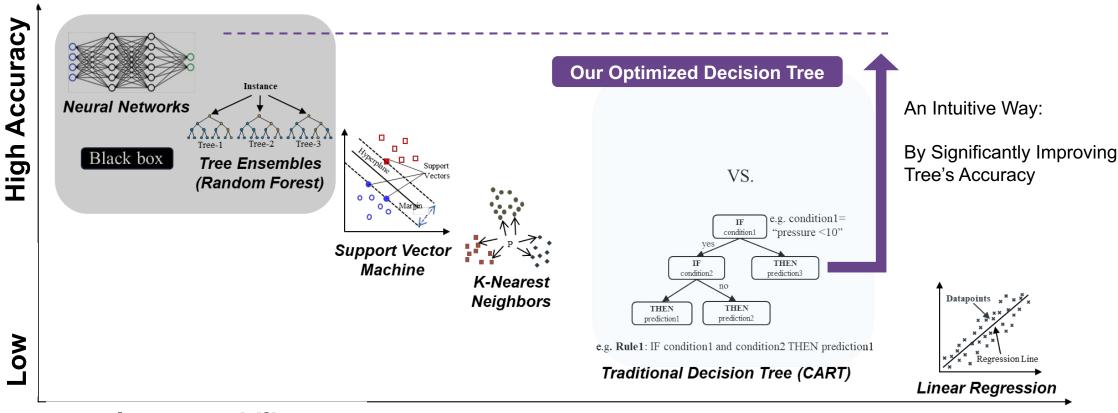
University of British Columbia, Vancouver, Canada

Contents

- Introduction and Motivation
 - Decision tree's two key issues that limit its broader applicability
- 2 Proposed "ReLU+Argmin"-based Differentiable Decision Tree
 - Unconstrained oblique decision tree exact reformulation
 - Gradient-based entire tree optimization framework for RADDT
- 3 Numerical Experiments and Discussions
 - Accuracy, model complexity, inference time and interpretability

Introduction and Motivation

Decision Tree's Two Key Issues That Limit Its Broader Applicability: Lower testing accuracy and Non-differentiability



Low Interpretability

High Interpretability

First aim: to improve tree's accuracy

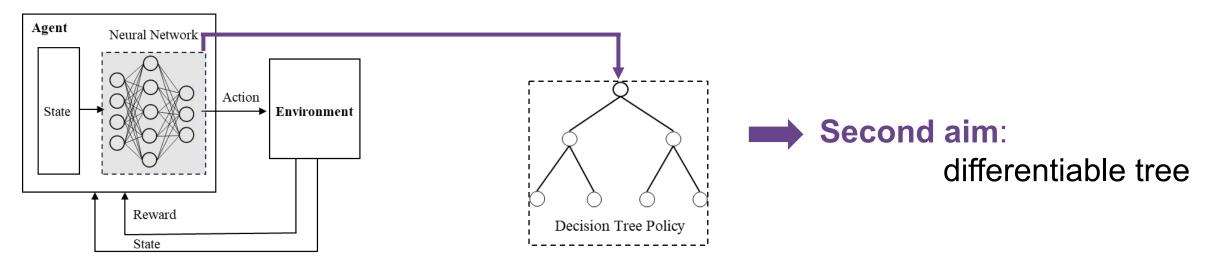
Introduction and Motivation

Decision Tree's Two Issues: Lower test accuracy and Non-differentiability

Non-differentiability: two sources of hard decisions

- Hard splits at branch nodes for sample branching.
- Unique decision path at leaf node for sample prediction.

Limitation in gradient-based optimization tasks.



decision tree policy optimization in reinforcement learning.

Introduction and Motivation

Improve Decision Tree's Accuracy Through Advanced Optimization

Greedy Optimization

CART (Breiman et al., 1984) OC1 (Murthy et al., 1994) Mixed-integer Programming

OCT/ORT (Bertsimas and Dunn, 2017)
Scalability Issue

Other optimization

Gradient-based

. . .

Solvability Benefit

Concerns on existing gradient-based trees

Straight-through estimator: suboptimal.

(3)

Approximate hard decisions (0 or 1) with probability (0, 1): soft tree.

8

How can high accuracy be achieved in a differentiable tree while preserving the two sources of hard decisions?

Contents

- Introduction and Motivation
 - Decision tree's two key issues that limit its broader applicability
- 2 Proposed "ReLU+Argmin"-based Differentiable Decision Tree
 - Unconstrained oblique decision tree exact reformulation
 - Gradient-based entire tree optimization framework for RADDT
- **3** Numerical Experiments and Discussions
 - Accuracy, model complexity, inference time and interpretability

Unconstrained Oblique Decision Tree Reformulation

Basic mathematical notations

Dataset: $\{x_i, y_i\}_{i=1}^n$ Tree Depth: D

Brach node: \mathbb{T}_B

Leaf node: \mathbb{T}_L

Weight: $a_t \in \mathbb{R}^p$ $t \in \mathbb{T}_B$ Tree split parameters $b_t \in \mathbb{R}$ $t \in \mathbb{T}_B$

Leaf value: $\theta_t = \{ \mathbf{k}_t \in \mathbb{R}^p, h_t \in \mathbb{R} \}$ $t \in \mathbb{T}_L$ for regression

 $\theta_t = \{h_t \in \mathbb{R}^c\}$ for classification

Leaf prediction parameter

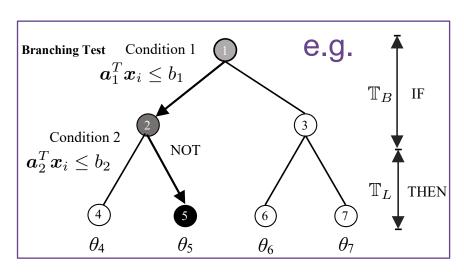
Final prediction:

$$\hat{y_i} = h_t$$

 $\hat{y_i} = h_t$ for tree with constant predictions

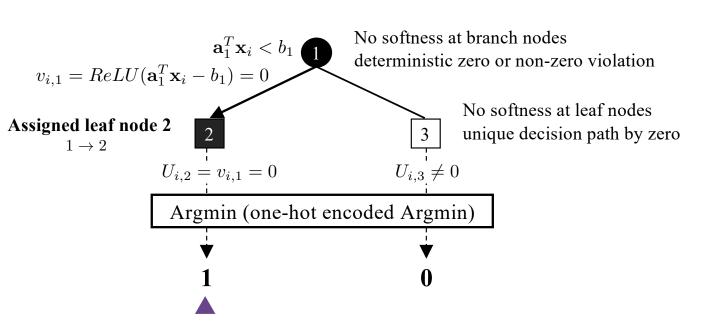
$$\hat{y}_i = \boldsymbol{k}_t^T \boldsymbol{x}_i + h_t$$

 $\hat{y}_i = k_t^T x_i + h_t$ for tree with linear predictions



Unconstrained Oblique Decision Tree Reformulation

Example of 1-depth tree (correct sample assignment $1 \rightarrow 2$)



• Loss function: $\mathcal{L}_i = (y_i - \theta_2)^2$

Violations of correctly-directed path

$$v_{i,1} = ReLU(\mathbf{a}_1^T \mathbf{x}_i - b_1) = 0$$

Correct-direction; No violation.

Cumulative violations: only one zero-violation at the unique path

Path to node 2: $U_{i,2} = 0$

Path to node 3: $U_{i,3} \neq 0$

$$\mathcal{L}_i = \left[\underline{1 \cdot (y_i - \theta_2)^2 + 0 \cdot (y_i - \theta_3)^2} \right]$$

Correctly Assigned

Unconstrained Oblique Tree Exact Reformulation

ReLU-based hard splits \rightarrow left-right branching (zero or non-zero violation).

No softness for sample branching

• Correct direction: violation $v_{i,j} = 0$

Cumulative violations across all ancestors $\mathbb{A}_t = \mathbb{A}_t^l \cup \mathbb{A}_t^r$

$$U_{i,t} = \sum_{j \in \mathbb{A}_t^l} v_{i,j} + \sum_{j \in \mathbb{A}_t^r} v_{i,j}$$

Unique decision path formulation using Argmin (No softness for sample prediction)

$$\mathbb{M}(U_{i,t}) = \mathbb{1}\left(t = (\operatorname{Argmin}(\mathbf{U}_i) + \lceil T/2 \rceil)\right)$$
$$\mathbf{U}_i = \{U_{i,|T/2|+1}, \cdots, U_{i,T}\}$$

Only outputting one when $U_{i,t} = 0$; otherwise 0.

Unique tree path (correctly assigned)

Unconstrained optimization task

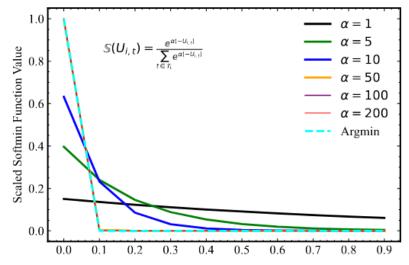
$$\mathcal{L} = \sum_{i=1}^{n} \sum_{t \in \mathbb{T}_{L}} \mathbb{M}\left(U_{i,t}\right) \ell\left(y_{i}, \hat{y}_{i}\right)$$

Multi-run Warm Start Annealing Strategy For Scaling Softmin Operations

$$\mathcal{L} = \sum_{i=1}^{n} \sum_{t \in \mathbb{T}_{L}} \underline{\mathbb{M}(U_{i,t}) \, \ell(y_{i}, \hat{y_{i}})}$$
Involve Argmin operation
$$\longrightarrow \text{ undefined gradient}$$

Scaled Softmin to approximate Argmin

$$\mathbb{S}\left(U_{i,t}\right) = \frac{e^{\alpha(-U_{i,t})}}{\sum_{t \in \mathbb{T}_L} e^{\alpha(-U_{i,t})}} \longrightarrow \mathcal{L} = \sum_{i=1}^n \sum_{t \in \mathbb{T}_L} \mathbb{S}\left(U_{i,t}\right) \ell\left(y_i, \hat{y}_i\right)$$



By starting with a smaller α and gradually increasing it

The solution from an optimization task with a smaller α is used to warm-start the next task with a larger α.

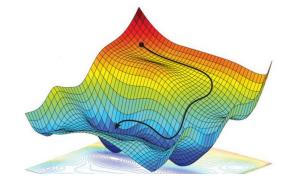
Trade-off between approximation accuracy and numerical stability

Gradient-based Entire Tree Optimization Framework for RADDT

Why to implement optimization within existing frameworks?

Efficient gradient calculations Mature auto differentiation tools.

- Efficient parameter updates
 Powerful gradient-based optimizers, e.g. Adam optimizer.
- High-performance computing Distributed multi-GPU parallelization.



Contents

- 1 Introduction and Motivation
 - Decision tree's two key issues that limit its broader applicability
- 2 Proposed "ReLU+Argmin"-based Differentiable Decision Tree
 - Unconstrained oblique decision tree exact reformulation
 - Gradient-based entire tree optimization framework for RADDT
- **3** Numerical Experiments and Discussions
 - Accuracy, model complexity, inference time and interpretability

14 compared baselines across 8 groups

- (a) greedy: CART, HHCART (Wickramarachchi et al., 2015), RandCART (Blaser and Fryzlewicz, 2016), OC1 (Murthy et al., 1994)
- (b) non-greedy tree: TAO (Zharmagambetov and Carreira-Perpinan, 2020)
- (c) gradient-based trees using STE: GradTree (Marton et al., 2023), DGT (Karthikeyan et al., 2022), DTSemNet (Panda et al., 2024)
- (d) sigmoid-based soft tree: SoftDT (Frosst and Hinton, 2017)
- (e) relaxed MIP-based tree solved via implicit differentiation LatentTree (Zantedeschi et al., 2021)
- (f) Local search ORT-LS (Dunn, 2018)
- 【g) soft tree variant using smooth-step function TEL (Hazimeh et al.,2020) (Tree ensemble)
- (h) other ensembles like random forest RF and XGBoost

Since it remains uncertain whether oblique trees can match tree ensemble's accuracy, we include RF and XGBoost as a commonly used and strong ensemble baselines, and TEL as the oblique ensemble counterpart.

Evaluation on 4 groups of datasets

- (i) 17 medium-sized regression datasets (primary focus)
- (ii) 27 classification and 9 regression datasets used in the papers of certain baselines (for a more credible comparison)
- (iii) 4 real-world small datasets, and 3 synthetic datasets (for comparing global optimality)
- (iv) 7 million-scale datasets (for evaluating scalability).

We mainly evaluate regression tasks, but also include the same classification datasets used by certain baselines for a more convincing comparison.

Test Accuracy Comparison

Our tree with constant predictions RADDT

	Greedy Methods				Gradient-based ^{1, 2}		Local Search	Ours
	CART	RandCART	HHCART	OC1	GradTree	SoftDT	ORT-LS	RADDT
Testing Accuracy $(R^2, \%)$	74.85	71.20	76.75	73.31	64.30	72.72	78.67	82.39
Tree Depth	10.24	8.12	8.29	8.12	10.29	10.29	6.24	7.29
Friedman Rank	4.65	5.88	3.65	5.06	7.00	4.76	3.24	1.76

^{7.54%} higher than CART

3.72% higher than ORT-LS

Our tree with linear predictions RADDT-Linear

	RF	XGBoost	TEL	RADDT	RADDT-Linear
Number of Trees	314.71	352.94	10	1	1
Test Accuracy $(R^2, \%)$	82.62	83.51	83.87	82.39	84.63
Friedman Rank	2.88	$\bf 2.24$	3.29	4.35	2.24

RADDT-Linear outperforms RF by 2.01%

Our aim is NOT to claim superiority over ensembles. Instead, we provide a reference showing that our tree can match ensemble's accuracy with far fewer parameters.

¹ Other two gradient-based DGT and LatentTree are compared later with fixed depths due to scalability issues at depth 12.

² More results on their originally-used dataset are discussed in the paper, include GradTree, SoftDT, DGT, and DTSemNet.

Superior Testing Accuracy Analysis: From Training Optimality Perspective

Fixed-depth comparison of training, testing accuracy and training time on Group (i) datasets.

	D	Greedy Methods				Gradient-b	Local Search	Ours			
		CART	RankCART	HHCART	OC1	GradTree	SoftDT	DGT	LatenTree	ORT-LS	RADDT
Train $(R^2,\%)$	2	46.95	32.81	46.20	49.59	39.42	50.59	64.48	66.94	66.43	71.78
	4	61.16	54.09	62.65	63.21	53.29	56.83	75.83	72.25	79.52	82.18
	8	81.45	77.51	82.26	81.43	64.65	66.81	82.01	74.54	90.91	90.93
	12	93.45	93.06	94.74	93.02	66.86	73.03	/	/	97.46	96.36
Test $(R^2,\%)$	2	46.14	32.47	45.61	47.95	38.53	49.94	63.81	66.42	64.51	70.07
	4	58.92	52.69	61.30	60.22	51.45	56.32	75.16	71.03	75.06	78.98
	8	69.77	69.93	74.57	69.08	62.40	66.44	79.99	70.77	74.93	77.89
	12	68.28	64.13	68.37	65.57	63.81	72.45	/	/	68.25	73.11
Time (s)	2	0.03	0.70	4.43	3,216	31.32	22.24	2,102	1,624	457.21	542.22
	4	0.04	1.56	7.45	4,192	54.74	81.88	$2,\!577$	$2,\!194$	868.08	478.81
	8	0.07	5.08	12.52	4,803	298.92	1,209	4,049	$2,\!381$	9,336	602.69
	12	0.10	12.61	22.01	5,103	10,417	$54,\!829$	/	/	210,141	2,643

■ Our RADDT outperforms the baseline CART by 24.83%, 21.02% and 9.48% in training for depths of 2, 4 and 8

 \Rightarrow showcase the efficacy of our tree optimization to achieve better training optimality.

High train accuracy → High test accuracy (if no overfitting)

GPU Acceleration (Training Time), Model Complexity (Inference Time)

Our method scales to 12-depth deep tree on million-scale datasets, where existing gradient-based trees fail.

For a similar accuracy, our oblique tree may NOT require more parameters overall than orthogonal tree.

Interpretability depends on **multiple factors:** tree depth, feature number, and the accuracy-simplicity trade-off.

Limitation and Future Work

- Inadequate regularization.
- A lack of theoretical analysis.
- Fail to consider the corner case where both $a_j = 0$ and $b_j = 0$.

- More tuning on regularization parameters for tree ensembles.
- Apply our proposed optimization strategies to other gradient-based trees.
- Try different alternatives for scaled softmin operations, e.g. entmax function.

Reference

- [1] Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A., 1984. Classification and regression trees.
- [2] Murthy, S.K., Kasif, S., Salzberg, S., 1994. a system for induction of oblique decision trees.
- [3] Wickramarachchi, D.C., Robertson, B.L., Reale, M., Price, C.J., Brown, J., 2015. HHCART: an oblique decision tree.
- [4] Blaser, R., Fryzlewicz, P., 2016. Random rotation ensembles. Journal of Machine Learning Research 17, 1–26.
- [5] Zharmagambetov, A., Carreira-Perpinan, M., 2020. Smaller, more accurate regression forests using tree alternating optimization.
- [6] Marton, S., Bartelt, C., Lüdtke, S., 2023. Learning axis-aligned decision trees with gradient descent.
- [7] Karthikeyan, A., Jain, N., Natarajan, N., Jain, P., 2022. Learning accurate decision trees with bandit feedback via quantized gradient descent.
- [8] Panda, S.P., Genest, B., Easwaran, A., Suganthan, P.N., 2024. Vanilla gradient descent for oblique decision trees.
- [9] Frosst, N., Hinton, G., 2017. Distilling a neural network into a soft decision tree.
- [10] Zantedeschi, V., Kusner, M., Niculae, V., 2021. Learning binary decision trees by argmin differentiation.
- [11] Dunn, J.W., 2018. Optimal trees for prediction and prescription.
- [12] Hazimeh, H., Ponomareva, N., Mol, P., Tan, Z., Mazumder, R., 2020. The tree ensemble layer: differentiability meets conditional computation.

Other references can be found in the paper of "Differentiable decision tree via 'Relu+Argmin' reformulation".

Thank you.

Differentiable Decision Tree via "ReLU+Argmin" Reformulation

39th Conference on Neural Information Processing Systems (NeurIPS 2025)

Spotlight Paper

Presenter: Qiangqiang Mao

Authors: Mao Q., Ren J., Wang Y., Zou C., Zheng J. and Cao Y.

University of British Columbia, Vancouver, Canada