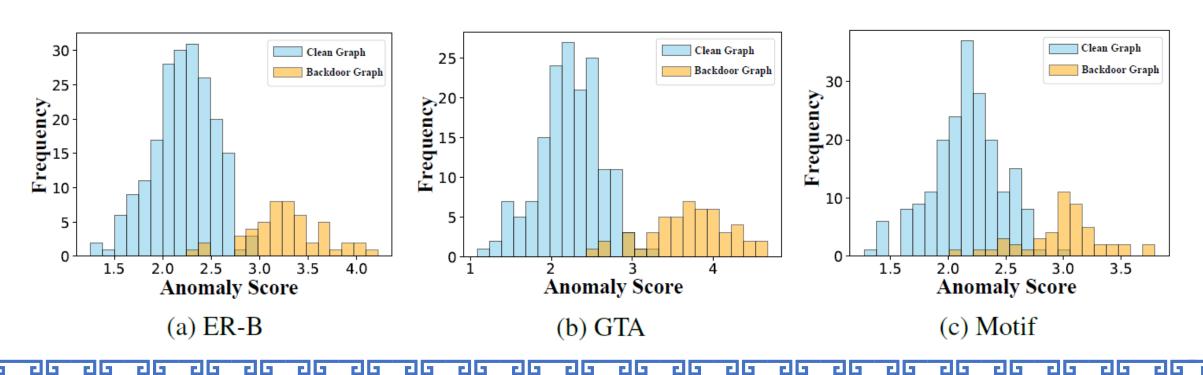


Stealthy Yet Effective: Distribution-Preserving Backdoor Attacks on Graph Classification

Xiaobao Wang, Ruoxiao Sun, Yujun Zhang, Bingdao Feng, Dongxiao He, Luzhi Wang, Di Jin

Introduction

- Graph Neural Networks (GNNs) have demonstrated strong performance across tasks, but remain vulnerable to backdoor attacks.
- Most existing graph backdoor studies focus on node classification. However, graph classification poses a fundamentally different and more complex challenge.
- Recent backdoor attacks on graph classification introduce obvious out-of-distribution (OOD) artifacts, which significantly compromise stealth and limit their practicality in real-world settings.



Introduction

Two Types of Deviations:

- **Structural Deviation:** Triggered by the injection of rare or unnatural subgraphs (e.g., low-frequency motifs) that diverge from the structural distribution of clean graphs.
- **Semantic Deviation:** Caused by label flipping, this introduces a discrepancy between a graph's assigned class and its inherent structure.

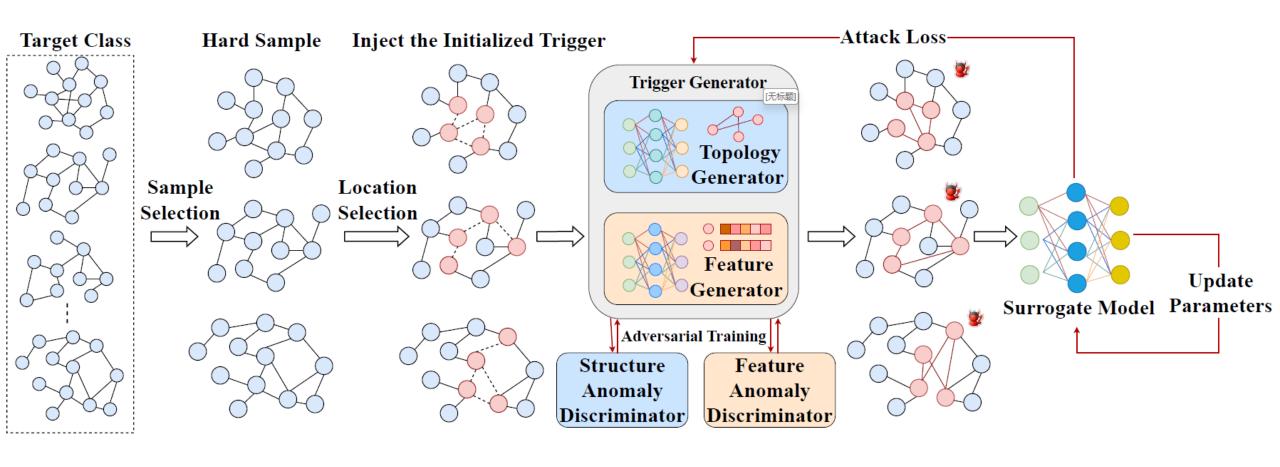
• Key Challenge:

• Can we design a graph-level backdoor attack that preserves the distributional properties of clean samples, avoids label manipulation, and remains both effective and stealthy?

Our Solution:

• We propose DPSBA, which utilizes clean-label setting and distribution-aware discriminator to achieve a balance between effective and stealthy.

Methodology



06 06 06

Methodology

25

• Hard Sample Selection:

• Hard Samples: Samples from the target class that the model finds uncertain.

$$\operatorname{cfd}(G) = \operatorname{softmax}(f_{\theta}(G))_{y_t} = \frac{e^{f_{\theta}(G)_{y_t}}}{\sum_{j=1}^{K} e^{f_{\theta}(G)_j}}$$

• We select the bottom p% of target-class graphs with the lowest cfd(G) scores as poisoned samples.

• Trigger Location Selection:

- Select high degrees nodes as candidates.
 Identify the M most influential nodes $S(v) = |f_{\theta}(G + \Delta_v) f_{\theta}(G)|$
- Identify the *M* most influential nodes.

- Topology Generator $\mathbf{H}' = \sigma(W_1\mathbf{H} + b_1)$
- Feature Generator $\mathbf{X}' = \sigma(W_2\mathbf{X} + b_2)$

احاله

حال حال

حاله

Methodology

25

• Trigger Optimization:

- Attack Effectiveness $\mathcal{L}_{atk} = -\log f_{\theta^*}(G_{g_t})_{y_t}$
- Stealthiness via Adversarial Anomaly Minimization

- The topology discriminator is a GCN
- The feature discriminator is an MLP

$$\min_{\omega_t} \max_{\theta_t} \mathcal{L}_d^{(t)} = \sum_{G \sim \mathcal{G}_c} \log D_{\theta_t}(G) + \sum_{G \sim \mathcal{G}_b} \log(1 - D_{\theta_t}(G_{g_t}(\omega_t))),$$

$$\min_{\omega_f} \max_{\theta_f} \mathcal{L}_d^{(f)} = \sum_{G \sim \mathcal{G}_t} \log D_{\theta_f}(G) + \sum_{G \sim \mathcal{G}_t} \log(1 - D_{\theta_f}(G_{g_t}(\omega_f))),$$

Joint Training Objectives

$$\min_{\omega_t} \sum_{G \in \mathcal{G}_b} \mathcal{L}_{atk}(G_{g_t}(\omega_t)) + \alpha \mathcal{L}_d^{(t)}(D_{\theta_t}(G_{g_t}(\omega_t))), \quad \text{s.t. } \theta^* = \arg\min_{\theta} \mathcal{L}_{train}(f_{\theta}(C))$$

$$\min_{\omega_f} \sum_{G \in \mathcal{G}_b} \mathcal{L}_{atk}(G_{g_t}(\omega_f)) + \beta \mathcal{L}_d^{(f)}(D_{\theta_f}(G_{g_t}(\omega_f))), \quad \text{s.t. } \theta^* = \arg\min_{\theta} \mathcal{L}_{train}(f_{\theta}(C))$$

00 00

리나 리나 리나

Experiment

26

• Main Experiment

Table 1: Comparison results between DPSBA and each baseline model

Datasets	Surrogate Model	Metrics	ER-B	LIA	GTA	Motif	Motif-S	Ours
	GCN	ASR (%) CAD (%) AUC (%)	51.53 4.73 70.04	68.35 4.70 71.01	73.16 5.14 78.20	70.91 5.92 79.16	48.56 4.66 64.72	73.93 4.62 60.11
PROTEINS_ full	GIN	ASR (%) CAD (%) AUC (%)	62.53 4.88 79.65	58.77 4.36 71.74	80.96 4.57 79.96	79.08 4.97 80.06	63.01 4.33 70.49	87.91 4.92 62.95
	SAGPool	ASR (%) CAD (%) AUC (%)	65.38 4.26 71.34	64.81 5.02 76.89	94.04 3.65 78.57	71.35 3.36 82.75	57.09 3.94 81.81	94.15 3.29 69.20
AIDS	GCN	ASR (%) CAD (%) AUC (%)	85.38 4.53 98.08	85.49 3.80 97.22	93.21 5.14 99.34	92.69 4.12 99.71	56.08 4.03 89.43	94.76 2.38 72.65
	GIN	ASR (%) CAD (%) AUC (%)	93.99 2.69 99.98	95.56 2.03 99.20	97.52 2.65 99.34	97.75 2.28 99.71	56.8 2.51 94.29	95.87 1.94 73.66
	SAGPool	ASR (%) CAD (%) AUC (%)	59.26 1.65 95.79	62.66 1.79 94.56	86.99 3.77 99.67	87.65 2.64 99.02	62.89 2.44 93.43	98.90 -0.40 77.23
FRANKEN- STEIN	GCN	ASR (%) CAD (%) AUC (%)	63.60 1.71 80.41	61.04 1.56 75.66	99.35 2.74 100.00	80.57 1.15 89.64	59.24 3.96 69.23	98.37 1.01 68.96
	GIN	ASR (%) CAD (%) AUC (%)	92.06 3.60 85.73	82.63 2.35 76.15	98.65 1.95 91.06	92.87 2.44 87.54	58.68 1.75 65.77	99.84 1.83 73.46
	SAGPool	ASR (%) CAD (%) AUC (%)	68.15 4.78 64.89	90.18 4.66 77.50	95.23 4.64 80.46	84.56 4.61 87.29	52.29 6.86 60.98	99.99 4.57 60.12
ENZYMES	GCN	ASR (%) CAD (%) AUC (%)	26.09 4.17 68.32	30.43 4.99 66.15	95.33 3.00 71.20	21.74 4.99 71.35	15.21 -1.67 66.22	96.67 -0.67 66.11
	GIN	ASR (%) CAD (%) AUC (%)	37.83 9.17 71.40	27.02 10.00 62.01	96.00 2.67 76.42	16.21 8.33 68.18	12.16 4.17 65.78	99.33 -0.33 41.20
	SAGPool	ASR (%) CAD (%) AUC (%)	29.54 4.33 57.73	38.63 6.67 63.98	100.00 5.00 70.37	15.91 10.83 75.47	11.37 3.33 69.48	100.00 4.00 49.91

76

26

25

76

Table 2: Results of the transferability evaluation(%)

Surrogate model	Actual model	PROTEINS_full		AIDS		FRANKENSTEIN	
Surrogute model		ASR	CAD	ASR	CAD	ASR	CAD
GCN	GIN	81.32	4.79	99.44	1.01	98.37	0.03
Jerv	SAGPool	98.90	0.08	96.14	2.48	94.96	-0.10

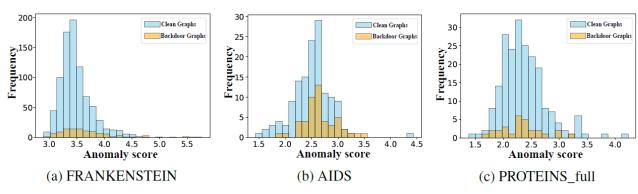


Figure 3: Anomaly distribution visualization

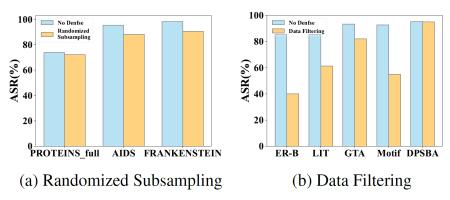


Figure 4: Attack performance under defense

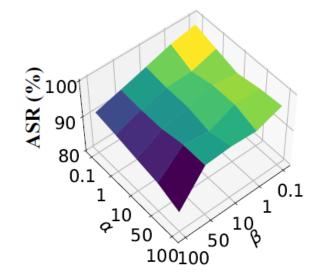
Experiment

• Ablation Experiment

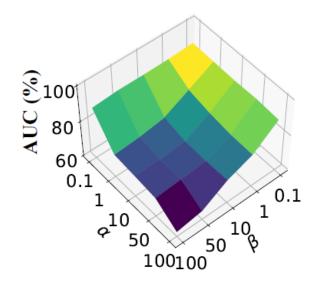
DPSBA/S	w/o hard sample selection
DPSBA/N	w/o position selection
DPSBA/F	w/o feature generator
DPSBA/T	w/o topology generator
DPSBA/OD	w/o adversarial training

Model	PROTEINS_full				AIDS		
1,10001	ASR	CAD	AUC	ASR	CAD	AUC	
DPSBA	73.93	4.62	60.11	94.76	2.38	72.65	
DPSBA/S	70.98	3.57	60.24	91.32	2.09	72.60	
DPSBA/N	70.74	4.53	58.97	93.67	2.31	71.26	
DPSBA/F	71.80	4.96	59.01	85.67	2.40	67.26	
DPSBA/T	69.08	3.71	54.73	93.66	2.91	71.41	
DPSBA/OD	90.88	4.90	90.23	99.46	3.54	93.72	
DPSBA/F DPSBA/T	71.80 69.08	4.96 3.71	59.01 54.73	85.67 93.66	2.40 2.91	67.26 71.41	

Impact of the Loss Weights α and β



76



The End, Thanks!

