Seeds of Structure: Patch PCA Reveals Universal Compositional Cues in Diffusion Models

Qingsong Wang¹, Zhengchao Wan², Mikhail Belkin¹, Yusu Wang¹ ¹University of California, San Diego, ²University of Missouri

(1) The Noise-to-Image Map

Diffusion model with an ODE sampler deterministically transforms noise into an image.

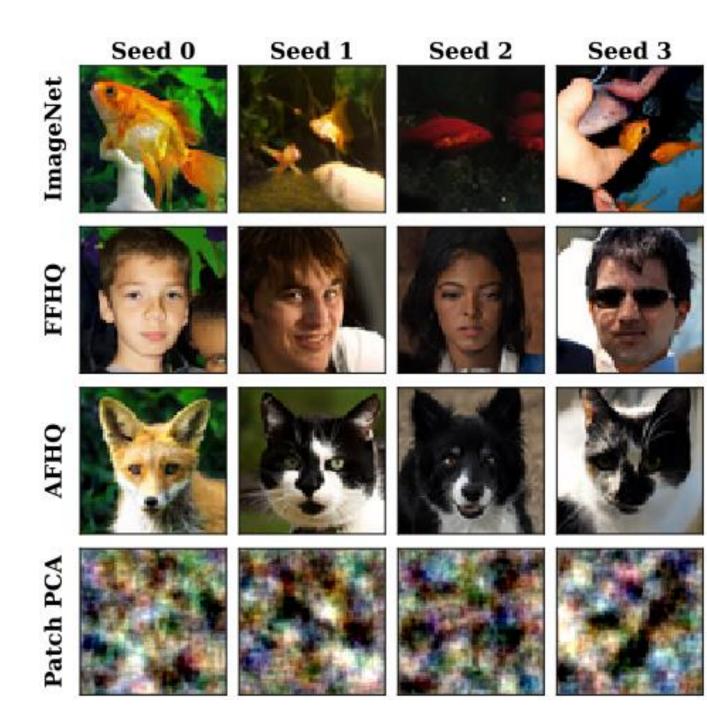
Question: What are the properties of this noise-to-image map?

Our findings:

- Noise is not just random: compositional structure of a generated image (e.g., layout, lighting) predominantly determined by the low frequency part of the initial noise.
- Patch PCA denoiser effectively extracts the shared compositional cue in noise.
- Enable compositional control through noise editing.

Similar Layout from the Same Seed

Same noise seed generates visually similar images with diffusion models trained on different datasets



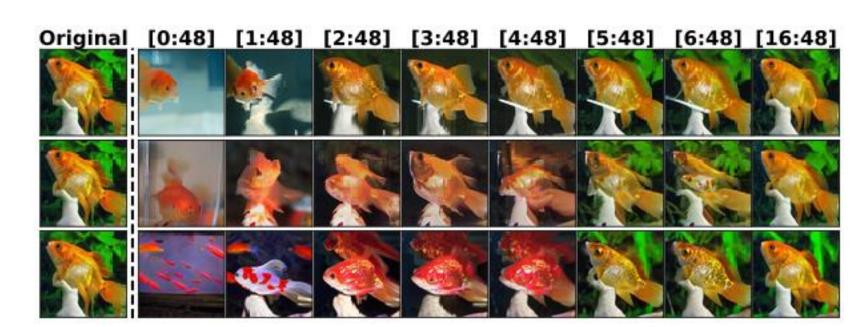
Images from identical seeds on ImageNet, FFHQ, AFHQ, and Patch PCA (to be introduced later)

Quantitative validation: high similarity score for the generated image from the same noise seed compared with randomly paired.

	SSIM (high	er is better)	MSE (lower is better)		
Network Pair	Same Seed	Random	Same Seed	Random	
ImageNet vs FFHQ	0.423 ± 0.087	0.065 ± 0.040	0.041 ± 0.017	0.136 ± 0.055	
ImageNet vs AFHQ	0.447 ± 0.097	0.062 ± 0.039	0.038 ± 0.018	0.130 ± 0.055	
FFHQ vs AFHQ	0.469 ± 0.074	0.054 ± 0.041	0.032 ± 0.012	0.128 ± 0.046	

Sensitivity of the Noise-to-Image Map

Perturbing low-frequency Patch-PCA components in initial noise dramatically changes generated image, while highfrequency perturbation leaves layout and semantics nearly unchanged.



(2) The Patch PCA Denoiser

Extracting the compositional cue with *Patch PCA denoiser*:

- 1. Patchify the image into overlapping patches.
- 2. Apply PCA denoiser for each patch with PCA computed from a generic set of patches (μ is the mean and λ_i are eigenvalues and u_i are eigenvectors).

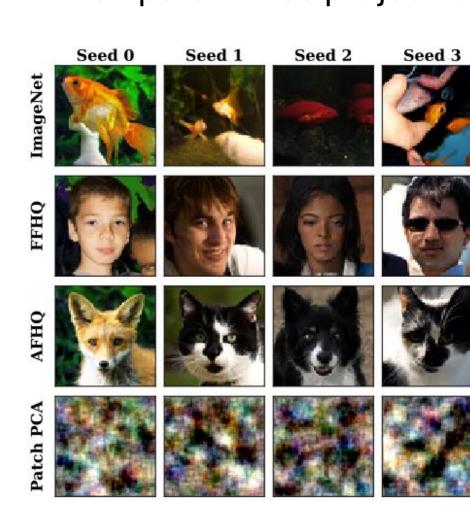
$$D_{\text{PCA}}(\mathbf{p}_i, \sigma) := \boldsymbol{\mu} + \sum_{j=1}^{p^2 c} \frac{\lambda_j}{\lambda_j + \sigma^2} \langle \mathbf{p}_i - \boldsymbol{\mu}, \mathbf{u}_j \rangle \mathbf{u}_j$$

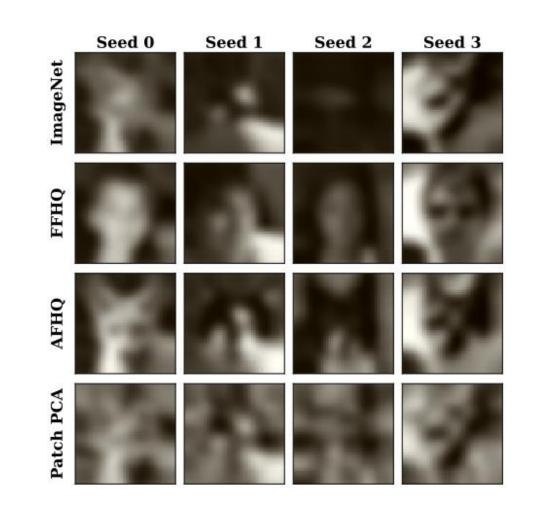
3. Unpatchify to reconstruct the image.

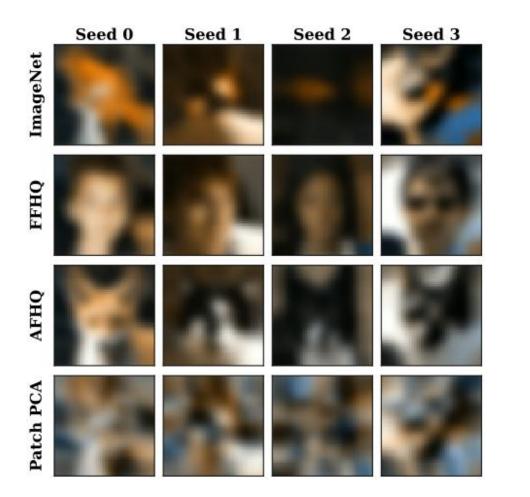
Theorem 5.1 (informal) Under a Gaussian patch assumption, the Patch PCA denoiser is optimal among all "patch-local" denoisers.

Qualitative validation of Patch PCA Denoiser:

Images (left) from identical seeds on ImageNet, FFHQ, AFHQ, and Patch PCA denoiser and their patch-wise projection to top-1 (middle) and top-2 (right) eigenspaces.







Quantitative validation of Patch PCA Denoiser

	SSIM (higher is better)		MSE (lower is better)	
Network Pair	Same Seed	Random	Same Seed	Random
Patch PCA vs ImageNet	0.474 ± 0.137	0.031 ± 0.027	0.049 ± 0.025	0.115 ± 0.037
Patch PCA vs FFHQ	0.473 ± 0.077	0.029 ± 0.033	0.045 ± 0.014	0.114 ± 0.027
Patch PCA vs AFHQ	0.548 ± 0.084	0.029 ± 0.034	0.036 ± 0.014	0.104 ± 0.029

Extension to Latent Diffusion model

Our method extends to latent diffusion models. A PCA denoiser built from patch statistics of encoded images generates images with a similar layout to neural network outputs, as illustrated below and quantified in our paper.

Stable Diffusion Generated Images

Patch-wise projection to the top 2 eigenspaces

(3) Training-Free Image Editing by Noise Editing

Editing with CIFAR-10 diffusion model

Reference

Original generation

Aligning the lowfrequency part in initial noise with the reference image.

Edited generation

Editing with ImageNet diffusion model (still use reference) at different aligning strengths.

Takeaways

Noise is not just random

- Compositional cues in noise are universal across models
- Patch PCA captures the compositional cue
- Training-free control via noise editing

Acknowledgements

This material is based upon work supported by NSF via grants CCF-2112665, DMS-2502083, and DMS-2502084, by the Office of Naval Research (ONR N000142412631), as well as by the Defense Advanced Research Projects Agency (DARPA) under Contract No. HR001125CE020.