

SuperCLIP: CLIP with Simple Classification Supervision

Weiheng Zhao¹ Zilong Huang²* Jiashi Feng² Xinggang Wang¹

¹School of EIC, Huazhong University of Science and Technology ²ByteDance

Motivation

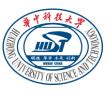
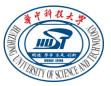
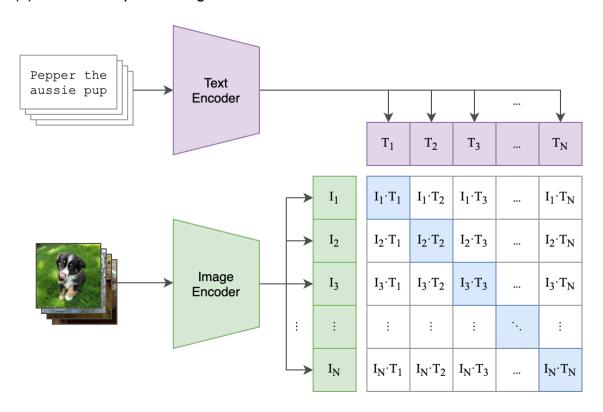


Figure 1: **Evaluating Fine-Grained Alignment in Image-Text Retrieval.** Each row presents pairs of images and captions that are visually and semantically very similar, but differ in fine-grained semantic distinctions such as object status (e.g. **Statue** vs. **Real**), spatial relation (e.g. **Outside** vs. **Inside**), and action (e.g. **Sitting** vs. **Standing**). While both images and texts are close in meaning, SuperCLIP demonstrates a stronger ability than CLIP in correctly distinguishing these fine-grained semantic distinctions. Additional examples are provided in **Appendix A.1**.

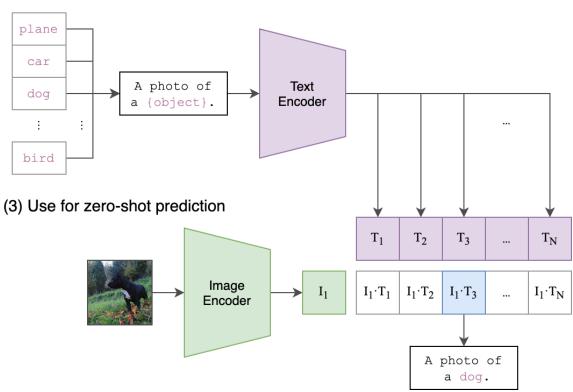
Contrastive Language-Image Pretraining



(1) Contrastive pre-training



(2) Create dataset classifier from label text



- Enable zero-shot visual understanding
- Exhibit proper scaling characteristics
- Demonstrate robust cross-modal capability

- Limited utilization of fine-grained textual semantics
- Dependence on noisy and weakly aligned web data
- High computational and resource demands

Limitations of Current CLIP Improvements

Limited focus on fine-grained alignment

Many improvements primarily concentrate on enhancing model architecture and training efficiency, while paying less attention to capturing fine-grained visual-text correspondences at the word or region level.

Dependence on additional labeled data

Several methods rely on extra annotated or re-captioned datasets to improve alignment, which limits scalability and diverges from CLIP's original web-scale, weakly supervised paradigm.

High computational cost

More complex architectures and dense supervision often lead to substantial computational and resource overhead, reducing training efficiency.

Limited generalization

Some approaches boost performance on specific benchmarks but compromise the generality and simplicity that make CLIP broadly transferable.

Super Simple Classification-based Supervision



Use raw text tokens as classification labels for image encoder

IDF Weighting

Down-weight frequent tokens using inverse document frequency:

$$w_c = \log igg(rac{|\mathcal{D}|}{1+\mathrm{df}(c)}igg)$$

Weighted Label

Normalize weighted token labels:

$$\hat{y}_c = rac{w_c y_c}{\sum_{c'=1}^V w_{c'} y_{c'}}$$

Classification Loss

Align model logits with weighted labels via cross-entropy:

$$\mathcal{L}_{ ext{Class}} = -\sum_{c=1}^{V} \hat{y}_c \log \Biggl(rac{e^{x_c}}{\sum_{c'=1}^{V} e^{x_{c'}}}\Biggr)$$

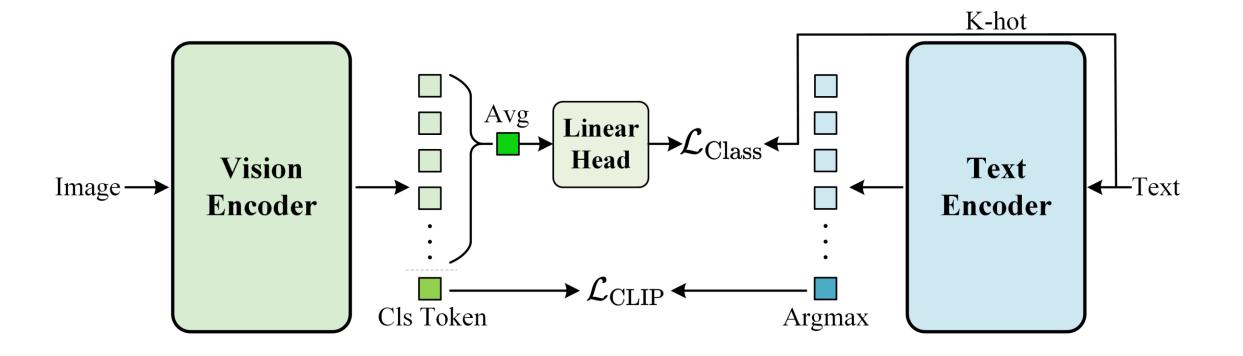
text tokens

image

image tokens

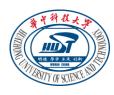
CLIP with Simple Classification Supervision





$$\mathcal{L}_{ ext{Total}} = \mathcal{L}_{ ext{CLIP}} + \mathcal{L}_{ ext{Class}}$$

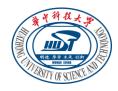
Comparison across Different Model Sizes



Model	Pretrain	Image Cla	ssification	Image F	Retrieval	Text Retrieval	
1,1000	110010111	val	v2	COCO	Flickr	COCO	Flickr
CLIP	B-512M	60.5	53.0	29.0	54.5	46.7	73.3
SuperCLIP	B-512M	63.5 (+3.0)	55.2 (+2.2)	31.3 (+2.3)	56.9 (+2.4)	47.8 (+1.1)	75.6 (+2.3)
CLIP	L-512M	66.1	57.4	32.7	57.0	49.6	76.4
SuperCLIP	L-512M	70.1 (+4.0)	62.5 (+5.1)	35.9 (+3.2)	62.4 (+5.4)	52.2 (+2.6)	79.3 (+2.9)
CLIP	L-12.8B	79.0	72.0	43.9	72.7	62.5	87.0
SuperCLIP	L-12.8B	80.0 (+1.0)	72.8 (+0.8)	45.5 (+1.6)	74.2 (+1.5)	63.1 (+0.6)	88.1 (+1.1)

Table 2: Comparison with CLIP across Different Model Sizes. We report zero-shot image classification accuracy (%) on ImageNet-1K (val and v2), and zero-shot image and text retrieval (Recall@1, %) on COCO and Flickr30K, comparing CLIP and our SuperCLIP under three settings: B-512M, L-512M, and L-12.8B, where models are pretrained on 512M or 12.8B samples from DataComp-1B. Values in parentheses reflect absolute gains or drops for SuperCLIP relative to CLIP.

Brief Analysis of Performance Gain



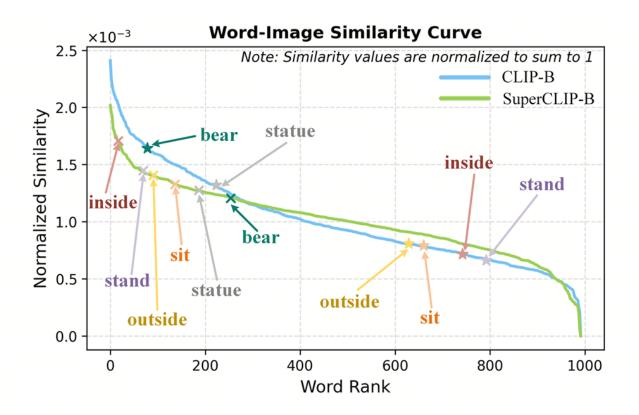


Figure 3: **Visualization of Word-Image Similarity Distribution.** We ranked the similarity scores of 1,000 words that appeared in the captions and highlighted the positions of fine-grained attributes discussed in the above Fig.1.

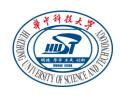
SuperCLIP	CLIP	Component
	59.689 6.547	Vision Encoder Text Encoder
•	6.547	Linear Head

Table 3: FLOPs Count (GFLOPs).

Metric	CLIP	SuperCLIP
Total words	992	992
Std Deviation	0.0340	0.0213
Value Range	0.2065	0.1401
Mean Slope	0.000208	0.000141
Top-1 \rightarrow 100	0.0702	0.0439

Table 4: **Statistical Summary.** Mean Slope (Δ sim): Average drop in similarity between words as the rank goes down. Top-1 \rightarrow 100: Difference in similarity between the 1st and 100th word.

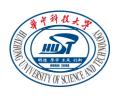
Comparison with CLIP using Mixed Caption



Model-Size	Mixed Caption	Image I	Retrieval	Text Re	etrieval	Image Classification	
TYTOGET SIZE	Short / Long	COCO	Flickr	COCO	Flickr	Average. 38	
CLIP-B	1.0 / 0.0	29.0	54.4	46.7	73.7	43.4	
SuperCLIP-B	1.0 / 0.0	31.3	57.6	47.8	75.6	44.5 (+1.1)	
CLIP-B	0.0 / 1.0	23.6	41.8	40.5	66.2	27.8	
SuperCLIP-B		30.6	48.7	47.2	70.4	31.4 (+3.6)	
CLIP-B	0.8 / 0.2	32.7	57.5	50.2	76.0	42.8	
SuperCLIP-B	Dual	34.1	60.2	51.2	76.6	45.1 (+2.3)	
CLIP-L	1.0 / 0.0	32.7	57	49.6	76.4	45.7	
SuperCLIP-L	1.0 / 0.0	35.9	62.4	52.2	79.3	48.6 (+2.9)	
CLIP-L	0.0 / 1.0	26.2	43.1	42.9	65.9	30.0	
SuperCLIP-L		34.2	55.7	52.1	75.0	33.8 (+3.8)	
CLIP-L	0.8 / 0.2	37.0	61.1	53.7	78.8	46.8	
SuperCLIP-L	Dual	37.6	65.3	54.0	82.5	49.5 (+2.7)	

Table 5: Comparison with CLIP using Mixed Captions. "Mixed Caption" refers to the ratio of short (DataComp-1B) and long (Recap-DataComp-1B) captions used during training. The "0.8/0.2" mix is the optimal ratio identified in [31] through extensive tuning. "Dual" denotes our setup where the contrastive loss uses only short captions and the classification loss uses only long captions. We report average zero-shot image classification accuracy (%) across 38 datasets, and zero-shot image/text retrieval (Recall@1, %) on COCO and Flickr30K, using 512M training samples. Bold numbers indicate the best results, while values in parentheses show absolute gains or drops of SuperCLIP relative to CLIP.

Generalize to Other CLIP-style Frameworks



Model	Image Cla	ssification	Image F	Retrieval	Text R	etrieval
IVIOUCI .	val	v2	COCO	Flickr	COCO	Flickr
SigLIP	60.4	52.8	29.8	53.9	45.8	73.2
SuperSigLIP	64.1 (+3.7)	55.9 (+3.1)	32.5 (+2.7)	56.8 (+2.9)	48.6 (+2.8)	75.9 (+2.7)
FLIP	58.1	50.1	27.5	51.8	44.1	66.7
SuperFLIP	61.3 (+3.2)	53.5 (+3.4)	30.1 (+2.6)	54.0 (+2.2)	46.7 (+2.6)	72.0 (+5.3)

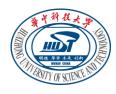
Table 6: **Generalization to Other CLIP-Style Frameworks.** We report **zero-shot** performance on image classification accuracy (%) on ImageNet-1K (val and v2), and image/text retrieval (Recall@1, %) on COCO and Flickr30K, comparing SigLIP and FLIP with their SuperCLIP variants (SuperSigLIP and SuperFLIP). All models are pretrained with 512M samples (B-512M). Numbers in parentheses indicate absolute gains over the original models.

Enhance CLIP for Purely Visual Tasks

Model	Pretrian	Class ↑	Segmen	$\mathbf{Depth} \downarrow$	
1120401		ImageNet-1K	PASCAL	ADE20k	NYUv2
CLIP	B-512M	75.6	57.8	28.0	0.768
SuperCLIP	B-512M	77.1 (+1.5)	65.5 (+7.7)	32.1 (+4.1)	0.746 (-0.022)
CLIP	L-512M	79.7	67.8	34.2	0.740
SuperCLIP	L-512M	81.0 (+1.3)	71.2 (+3.4)	36.3 (+2.1)	0.733 (-0.007)

Table 7: **Enhance CLIP for Purely Visual Tasks.** We report performance on three purely visual tasks: **linear probing** image classification(Class) on ImageNet-1K (Accuracy, %), semantic segmentation(Segmentation) on PASCAL and ADE20K (mIoU), and depth estimation(Depth) on NYUv2 (RMSE). We compare CLIP and SuperCLIP under identical pretraining and evaluation settings to ensure a fair comparison across all purely visual tasks. Numbers in parentheses indicate absolute improvements over the original CLIP models.

Mitigate CLIP's Drop with Limited Batch Sizes



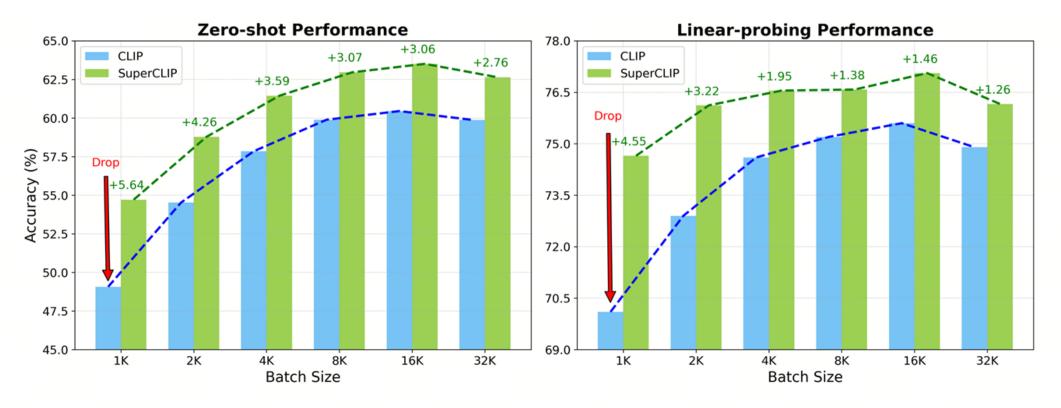


Figure 4: **Mitigate CLIP's Drop with Limited Batch Sizes.** We report zero-shot (Left) and linear-probing (Right) image classification accuracy (%) on ImageNet-1K (val) under varying batch sizes. The green bars represent the performance of SuperCLIP under different batch sizes, while the gray bars indicate the performance of CLIP under the corresponding batch sizes. Green numbers indicate absolute improvements over the original CLIP models at the corresponding batch sizes.

Integrate in Multi-modal LLM

			V	ision & I	anguage	e Downst	ream Tas	sks	
Model	Pretrian	VQAv2	GQA	VizWiz	T-VQA	SQA	MMB	MME	POPE
CLIP SuperCLIP	B-512M B-512M	67.8 69.6	55.4 57.5	42.1 44.4	47.8 48.4	69.3 69.1	49.1 55.9	1453 1562	81.7 82.0

Table 8: Compare with CLIP under Multi-modal LLM Setting. We report the performance scores on 8 vision & language downstream tasks. **Bold** numbers indicate the best result.

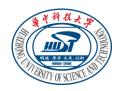
Additional Ablation Studies

Task _		Wei	ghting Factor	· (\(\lambda\)	
	0.4	0.6	1	1.4	1.6
Classification	44.1	45.0	47.1	46.9	47.2
Image Retrieval	41.3	42.1	44.0	43.8	44.2
Text Retrieval	58.3	59.8	61.0	60.9	62.0

Table 9: **Loss Weighting.** We report **zero-shot** classification accuracy (%) on ImageNet-1K (val) and the average retrieval result (Recall@1, %) across COCO and Flickr30K.

Design _	Image F	Retrieval	Text Retrieval		Classification
2 65 gii	COCO	Flickr	COCO	Flickr	ImageNet-1K
w/o IDF	31.6	51.7	48.0	71.1	44.8
IDF	33.2	54.7	48.9	73.1	47. 1

Table 10: **IDF Weighting.** We report **zero-shot** classification accuracy (%) on ImageNet-1K (val) and retrieval results (Recall@1, %) on COCO and Flickr30K, respectively.



Thank you!

Code & Models: https://github.com/hustvl/SuperCLIP