

PoseCrafter: Extreme Pose Estimation with Hybrid Video Synthesis

Qing Mao^{1,2*} Tianxin Huang³ Yu Zhu¹ Jinqiu Sun⁴ Yanning Zhang^{1†} Gim Hee Lee^{2†}

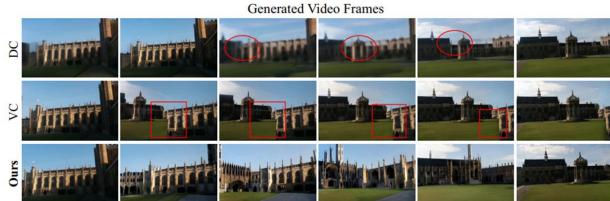
¹School of Computer Science, Northwestern Polytechnical University

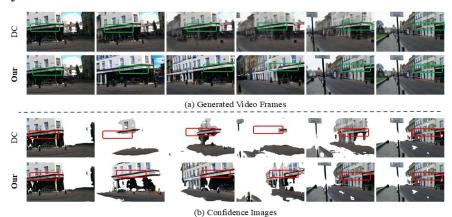
²School of Computing, National University of Singapore

³School of Computing and Data Science, The University of Hong Kong

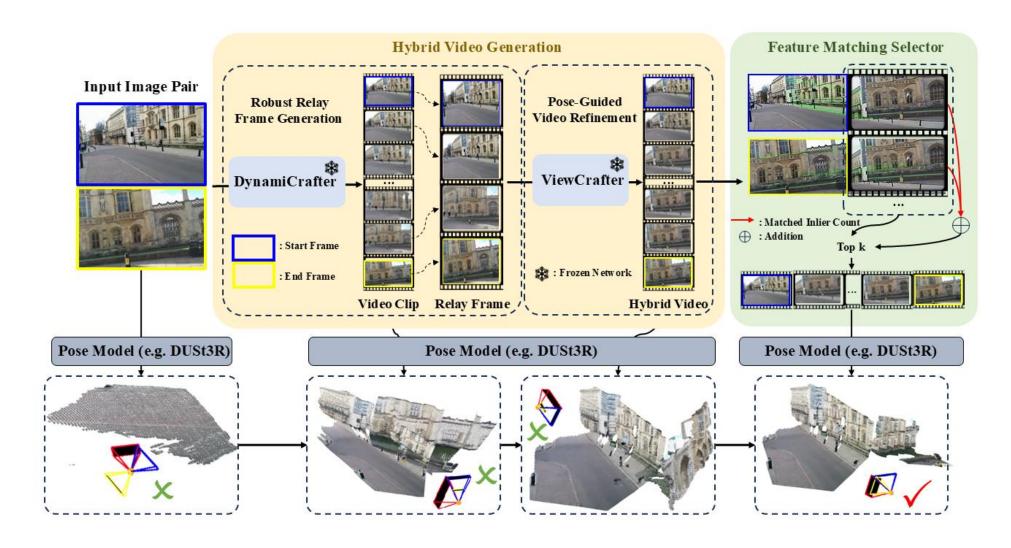
⁴School of Astronautics, Northwestern Polytechnical University

Introduction


Problem Definition


- Input: Two images captured from different camera poses.
 - ➤ The viewpoint change can be extremely large (strong rotation / large translation)
 - > The two views may have almost no visible overlap
- Output: Relative pose (R and T) between the two views.

Motivation


- Synthesizing intermediate views via video generation can increase effective overlap between image pairs with small or no overlap.
- Current video models under low-overlap inputs often produce blurry or geometrically inconsistent intermediate frames.
- Unreliable frames reduce confidence, thereby degrading pose estimation accuracy.

Methodology

Methodology

Hybrid Video Generation

□ Problem

> DynamiCrafter is prone to blurring and inconsistencies in the middle, while ViewCrafter can generate clear, high-fidelity frames only if a feasible camera trajectory is used as input.

□ method

- First, we use DynamiCrafter to synthesize intermediate frames and then select a small set of "Relay-frames" frames to ensure a geometrically consistent camera trajectory.
- The selected frames are subsequently provided to ViewCrafter, which generates high-fidelity intermediate views.

Table 1: Relay-frame sampling analysis using mean rotation error (MRE \downarrow). The setting #Frames=2 corresponds to $\{I_0,I_T\}$, #Frames=4 corresponds to $\{I_0,I_1,I_{T-1},I_T\}$, #Frames=6 corresponds to $\{I_0,I_1,I_2,I_{T-2},I_{T-1},I_T\}$, and #Frames=8 corresponds to $\{I_0,I_1,I_2,I_3,I_{T-3},I_{T-2},I_{T-1},I_T\}$. The case #Frames=16 uses all frames. Results indicate that #Frames=4 consistently achieves the lowest MRE and the highest stability across datasets.

Dataset	#Frames (n)								
	2	4	6	8	16				
Cambridge Landmarks	20.56	14.47	16.66	16.87	17.83				
ScanNet	19.67	16.23	17.03	17.16	18.56				
DL3DV-10K	15.22	14.27	14.40	14.73	14.52				
NAVI	7.78	6.94	7.18	9.64	10.92				

Methodology

Feature Matching Selector

□ Problem

Although the HVG stage produces high-fidelity candidate intermediate frames, **not all of these frames are beneficial for pose estimation**, and retaining too many of them incurs unnecessary computational cost.

□ method

From the candidate intermediate frames generated by HVG, we apply a **feature matching selector** to identify the frames that are **most favorable for accurate pose estimation**.

①Input: a set of candidate frames $\{I_t\}$ together with the start and end frames I_0 , I_T .

②Scoring: each candidate frame is independently matched to I_0 , I_T in feature space, and compute the number of RANSAC inliers.

$$S(t) = N_0(t) + N_T(t)$$

3Output: The top k frames (k=6) are then forwarded to the pose estimation model (DUSt3R).

Table 10: Ablation study on the number of intermediate frames selected by FMS.

#Frames	MRE↓	R@5°	R@15°	R@30°	$AUC_{30} \uparrow$
4	11.36	55.90	89.93	93.40	77.59
6	11.40	55.21	89.93	93.75	77.41
8	11.93	55.90	89.93	92.10	76.23

Comparison with State-of-the-Art: Quantitative Comparison on PoseCrafter

Table 2: Pose estimation on Cambridge Landmarks. We report rotation recall (R@ $\theta \uparrow$), translation recall (T@ $\theta \uparrow$), mean rotation error (MRE \downarrow), and AUC₃₀ \uparrow .

Method	Input	Yaw range [50°-65°]				Yaw range [65°-90°]					
Method	put	MRE↓	R@5°	R@15°	R@30°	AUC ₃₀ ↑	MRE↓	R@5°	R@15°	R@30	AUC ₃₀ ↑
DUSt3R	Pair	18.14	40.34	71.25	82.99	61.98	51.24	21.67	44.67	51.67	37.93
InterPose [‡] _{w/o SCS}	DynamiCrafter	16.11	42.70	75.70	87.35	65.72	42.51	30.67	42.51	61.33	47.18
InterPose	DynamiCrafter	13.61	51.81	81.50	83.30	70.47	38.87	36.33	65.67	68.33	55.24
Ourswo FMS	Hybrid video	13.24	54.51	89.24	92.71	76.13	34.87	31.33	68.33	77.67	56.29
Ours	Hybrid video	11.40	55.21	89.93	93.75	77.41	29.02	36.67	71.67	78.33	60.46

Table 3: Pose estimation on ScanNet. We report rotation recall (R@ $\theta \uparrow$), translation recall (T@ $\theta \uparrow$), mean rotation error (MRE \downarrow), mean translation error (MTE \downarrow), and AUC₃₀ \uparrow .

Yaw range	Method	Input	R@5°	R@15°	R@30°	T@5°	T@15°	T@30°	MRE↓	MTE↓	AUC30↑
	DUSt3R	Pair	43.97	74.14	79.31	25.34	52.07	78.45	19.41	25.23	47.37
	InterPose [‡] _{w/o SCS}	DynamicCrafter	46.55	77.59	85.34	16.38	48.10	64.74	17.51	35.25	42.69
50°-65°	InterPose [‡]	DynamicCrafter	50.86	81.03	87.07	27.58	61.21	69.46	15.15	23.89	53.33
	Oursw/o FMS	Hybrid video	51.72	87.07	93.10	23.28	50.62	67.07	12.38	29.02	45.53
	Ours	Hybrid video	53.45	88.79	94.83	33.62	65.52	77.69	10.77	22.14	57.03
	DUSt3R	Pair	42.05	67.05	70.45	26.59	46.59	53.86	30.82	29.99	36.50
	InterPose [‡] _{w/o SCS}	DynamicCrafter	38.64	62.50	65.90	20.45	39.77	47.72	35.18	58.89	33.40
65°-90°	InterPose	DynamicCrafter	45.45	67.05	71.59	31.81	53.41	64.77	28.22	29.52	45.98
	Oursw/o FMS	Hybrid video	46.59	76.14	82.95	23.85	48.86	57.95	22.61	35.98	41.72
	Ours	Hybrid video	50.00	77.72	84.09	37.50	63.64	73.86	17.02	29.28	56.44

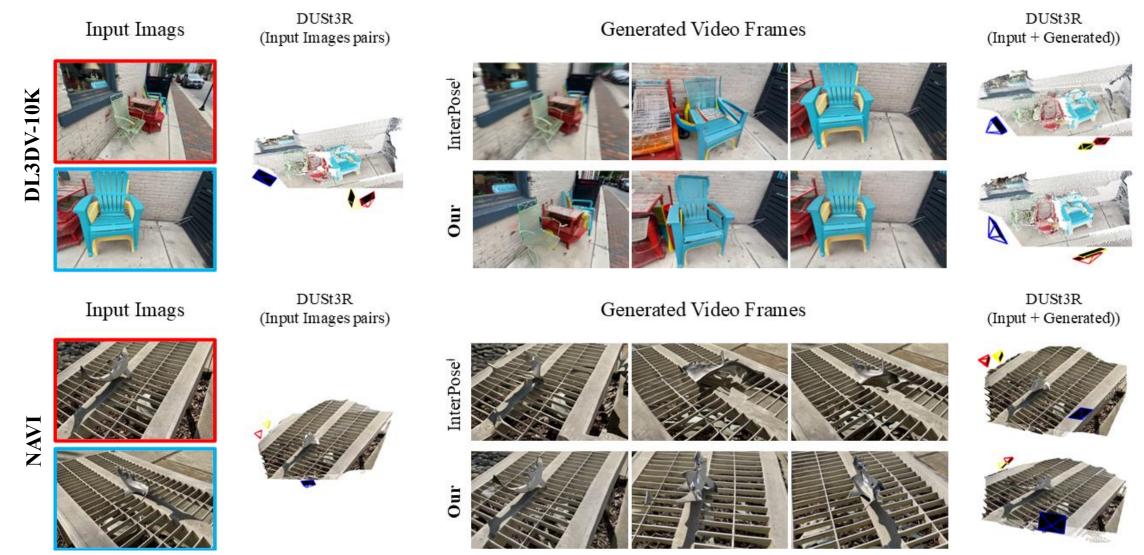
Comparison with State-of-the-Art: Quantitative Comparison on PoseCrafter

Table 4: Pose estimation on DL3DV-10K with [50°-90°] yaw range.

Method	Input	R@5°	R@15°	R@30°	T@5°	T@15°	T@30°	MRE↓	MTE↓	AUC ₃₀ ↑
DUSt3R	Pair	34.33	63.00	94.66	27.00	75.00	92.67	13.36	10.88	55.58
InterPose [‡] _{w/o SCS}	DynamicCrafter	36.33	64.33	95.00	26.00	76.33	92.67	13.32	11.27	55.68
InterPose [‡]	DynamicCrafter	36.11	64.33	97.66	27.66	79.67	95.33	13.17	10.76	56.05
Ours _{w/o FMS}	Hybrid video	38.33	68.33	98.33	30.66	79.61	96.67	12.89	10.71	57.16
Ours	Hybrid video	38.10	70.00	100.00	31.33	81.33	98.33	12.73	10.28	57.48

Table 5: Pose estimation on NAVI for the [50°-90°] yaw range.

Method	Input	R@5°	R@15°	R@30°	T@5°	T@15°	T@30°	MRE↓	MTE↓	AUC ₃₀ ↑
DUSt3R	Pair	64.69	95.72	98.05	62.37	97.28	98.22	7.30	7.82	82.37
InterPose [‡] _{w/o SCS}	DynamicCrafter	45.13	92.61	96.11	57.86	91.44	96.50	11.14	8.81	78.63
InterPose [‡]	DynamicCrafter	66.53	97.28	98.83	67.70	96.89	98.84	6.61	6.26	82.80
Ourswo FMS	Hybrid video	59.53	97.28	98.83	72.26	95.72	98.83	6.93	6.87	81.91
Ours	Hybrid video	70.82	97.67	98.83	75.10	98.44	99.22	5.97	5.46	83.98


Cambridge Landmarks

ScanNet

Comparison with State-of-the-Art: Qualitative Comparison on PoseCrafter

DUSt3R DUSt3R Generated Video Frames Input Imags (Input Images pairs) (Input + Generated)) InterPose⁴ Our DUSt3R DUSt3R Generated Video Frames Input Imags (Input + Generated)) (Input Images pairs) Inter-Pose Our

Comparison with State-of-the-Art: Qualitative Comparison on PoseCrafter

Runtime and Memory Cost

Table 6: Runtime and Memory Cost.

Method	Runt	ime	Memory Cost			
	Video Generation	Pose Estimation	Video Generation	Pose Estimation		
InterPose [‡] Ours	3.2min 3.8min	20.29min 0.18min	14.6GB 22.8GB	3.1GB 3.6GB		

Ablation Study

Table 7: Ablation study on Hybrid Video Generation. SCS and FMS denote the frame selection strategies from InterPose [5] and ours, respectively.

Method	Input	MRE↓	R@5°	R@15°	R@30°	AUC ₃₀ ↑
DUSt3R	Pair	18.14	40.34	71.25	82.99	61.98
InterPose [‡] _{w/o SCS}	DynamicCrafter	16.11	42.70	75.70	87.50	65.72
InterPose [∓]	DynamicCrafter	13.60	51.81	81.50	83.30	70.47
InterPose [‡] _{w/FMS}	DynamicCrafter	13.02	52.08	85.76	90.63	73.93
ViewCrafter _{w/o FMS} ViewCrafter _{w/ FMS}	ViewCrafter ViewCrafter	13.80 12.45	52.78 53.82	82.29 84.03	88.54 90.28	71.12 72.82
Ours _{w/o FMS} Ours _{w/ SCS} Ours	Hybrid video Hybrid video Hybrid video	13.24 12.11 11.40	54.51 54.86 55.21	89.24 88.54 89.93	92.71 91.32 93.75	76.13 76.11 77.41

Thanks for watching!