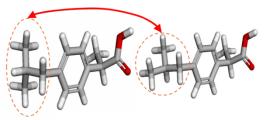
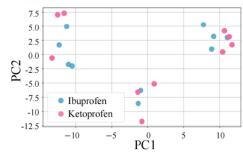
Structure-Aware Fusion with Progressive Injection for Multimodal Molecular Representation Learning

Authors: Zihao Jing, Yan Sun, Yan Yi Li, Sugitha Janarthanan, Alana Deng, Pingzhao Hu


Additions. Zindo bing, Tan Gan, Tan Tr Er, Gagiana banaranan, Alana Beng, Tingznao

NSERU CRSNG



Problem & Challenges

Presenter: Zihao Jing

(a) Two conformers show local 3D variation

(b) Conformers reveals PCA embedding instability Conformer instability and modality collapse motivate SFP + PI.

3D conformers are unstable → unreliable fusion

Valid conformers vary by sampler/seed; early 3D-dependent fusion overfits these artifacts and yields inconsistent predictions.

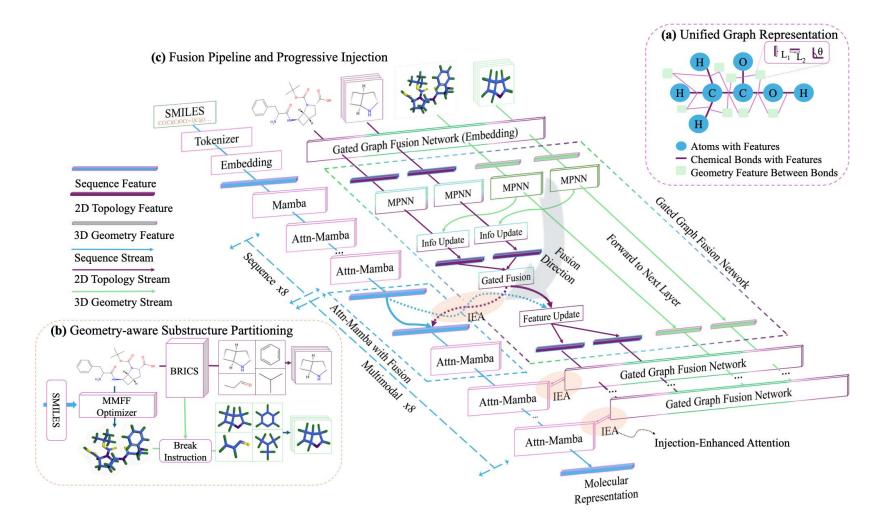
Naive/symmetric fusion → modality collapse

Equal, everywhere fusion lets high-variance 3D dominate, drowning SMILES semantics and hurting robustness.

Key Ideas / Contributions

Robust fusion of 2D+3D structure with SMILES, injected progressively into a sequence backbone—strong gains across 29 tasks.

- Structured Fusion Pipeline (SFP): align/encode 2D topology + 3D geometry into a stable structural prior.
- Progressive Injection (PI): asymmetrically inject that prior into the SMILES stream at later layers to avoid collapse.
- **Results:** avg +2.7% over best baseline across broad benchmarks; up to 27% gain on LD50.

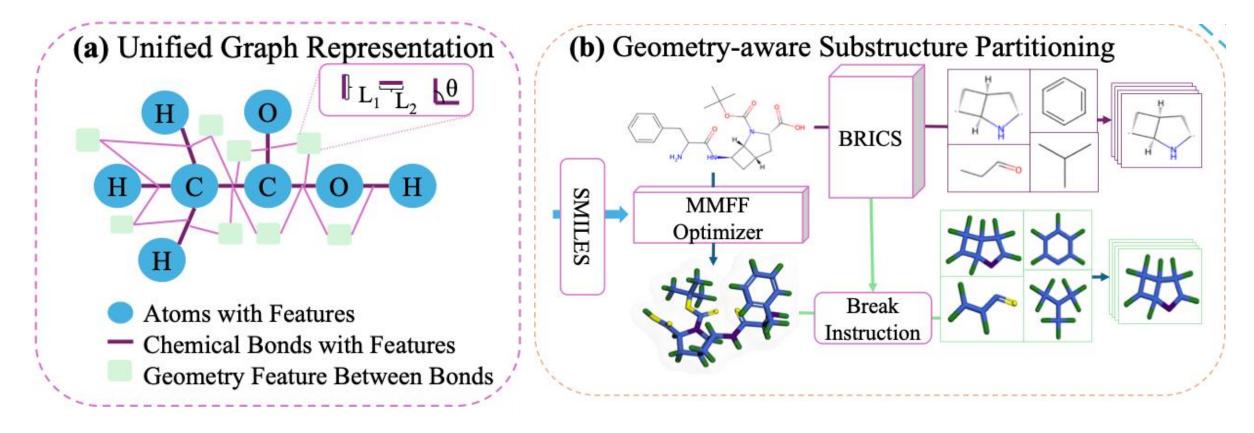

Paper Link

Contact Information

Zihao Jing, zjing29@uwo.ca

Pingzhao Hu, phu49@uwo.ca

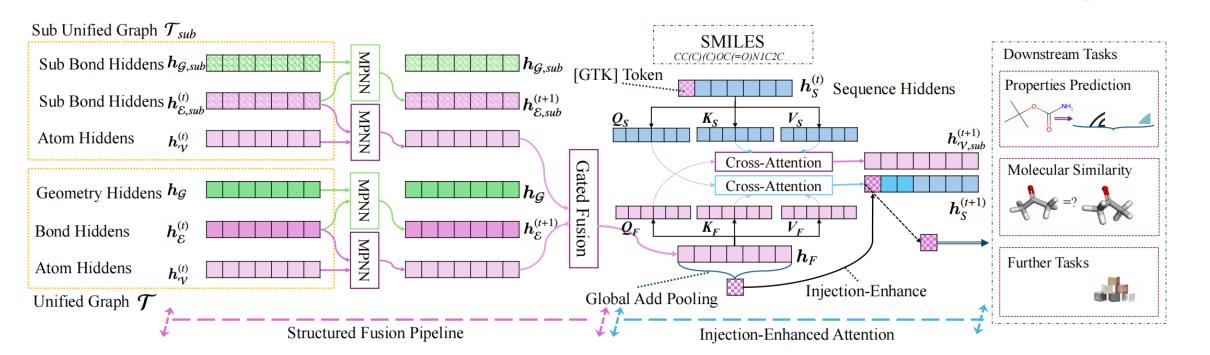
Method Overview


Two streams:

- Structural-fusion stream: 2D+3D fused

 → unified structural prior, propagated independently.
- Sequence stream: SMILES tokens modeled first; prior injected later via dedicated attention.

Novelty 1: Structured Fusion Pipeline (SFP)


- Structural Unified Graph: nodes (atoms), bonds, and auxiliary geometric linkages (lengths & angles) create a rotation-invariant joint structure.
- Geometry-Aware Substructure Partitioning: extend BRICS to 3D; fuse global + local features with gated fusion to form the structural prior.

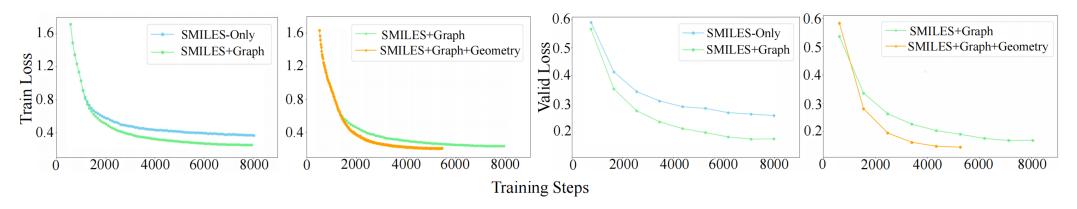
Novelty 2: Progressive Injection (PI)

Injection Enhanced Attention: bidirectional cross-attention aligns structure
← sequence, then pooled prior updates a global token [GTK]; prior continues evolving in state-space layers (Mamba) across depth.

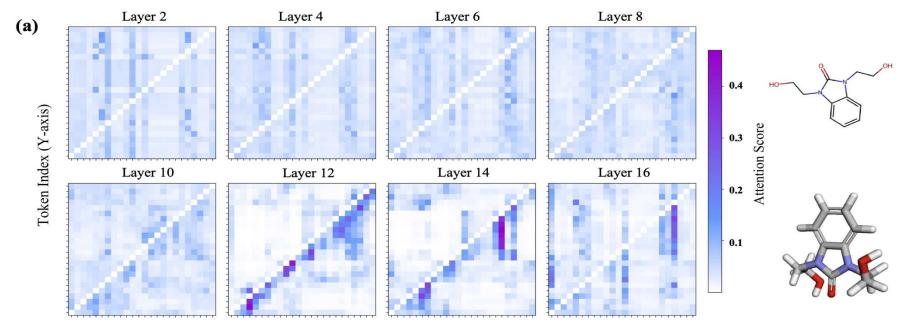
 Why progressive? Early symmetric fusion distorts semantics; delayed injection yields better stability and convergence.

Benchmarks

Models	BBB	HIA	Pgp	Вюач.	Tox-Avg.	CYP-Avg.	Top2Cnt/10
TDC Datasets - Classification - AUROC ↑							
ATTENTIVEFP	0.8550.011	0.9740.007	0.8920.012	0.6320.039	0.8420.010	0.7490.008	0
FPGNN	0.8880.018	0.9580.012	0.9300.007	0.6660.035	0.860 0.017	0.8660.004	4
DMPNN	0.8640.010	0.9760.004	0.8890.005	0.6170.050	0.8210.019	0.8190.004	2
ATTRMASKING	0.8920.012	0.9780.006	0.9290.006	0.5770.087	0.8460.021	0.8170.005	4
ContextPred	0.8970.004	0.9750.004	0.9230.005	0.6710.026	0.818 0.017	0.8270.003	1
TranFoxMol	0.8680.019	0.9510.036	0.8750.011	0.619 0.019	0.8370.017	0.8600.006	0
DEEPMOL	0.7740.023	0.8800.012	0.8210.007	0.5090.026	0.7350.015	0.7700.008	0
MuMo	0.8990.014	0.9790.013	0.9420.019	0.714 0.021	0.8400.015	0.880 0.017	7
Models	BACE-R	BACE-S	BBBP-R	BBBP-S	CLINTOX	SIDER	TOX21
MoleculeNet - Classification - AUROC ↑							
FPGNN	0.8310.011	0.8310.011	0.9040.020	0.8920.019	0.7320.068	0.661 0.014	0.8330.004
TRANSFOXMOL	0.780 0.032	0.7800.032	0.9070.024	0.8810.015	0.8300.047	0.6360.022	0.816 0.011
СнемВЕRTA-2	0.8480.037	0.8480.037	0.9320.037	0.8920.019	0.9330.054	0.7080.090	0.8090.029
MoLFormer	0.8730.009	0.8330.009	0.8890.028	0.8680.013	0.8880.044	0.6510.016	0.8040.013
Molbert	0.8820.015	0.8320.015	0.9550.008	0.949 0.013	0.8750.041	-	-
GROVER	0.779 0.059	0.7790.059	0.8490.008	0.8230.020	0.6850.066	0.6350.034	0.8080.014
Uni-Mol	0.840 0.031	0.84 0.031	0.8890.025	0.886 0.016	0.8180.065	0.666 0.021	0.8120.007
MuMo	0.8780.046	0.8490.014	0.9620.007	0.957 0.011	0.985 0.011	0.6770.009	0.8340.009
Models	LD50	Caco-2	PPBR	LIPO	Models	ESOL	Freesolv
TDC Datasets - Regression - MAE \downarrow MoleculeNet - Regression - RMSE \downarrow						- RMSE↓	
ATTENTIVEFP	0.6780.012	0.4010.032	9.3730.335	0.5720.007	СнемВЕRTa-2	0.6330.132	1.2190.206
FPGNN	0.6380.024	0.3260.040	8.4651.709	0.5440.011	FPGNN	0.6580.006	1.1060.195
DMPNN	0.6070.022	0.3880.077	8.1580.314	0.4480.014	GROVER	0.6170.077	1.9010.459
ATTRMASKING	0.6850.025	0.5460.052	10.0750.202	0.5470.024	MoLFormer	0.6530.029	1.1900.046
CONTEXTPRED	0.6690.030	0.5020.036	9.4450.224	0.5350.012	Molbert	0.6170.091	1.3110.257
TranFoxMol	0.6450.036	0.4870.068	9.0550.523	0.5250.024	TranFoxMol	0.9300.261	1.2250.155
DEEPMOL	0.5890.006	0.3270.012	9.5330.162	0.6600.004	Uni-Mol	0.769 0.153	1.5980.153
MuMo	0.4260.031	0.3150.055	7.3240.323	0.4480.007	MuMo	0.5360.061	1.0820.088


- Benchmarks: 29 tasks (TDC, MoleculeNet, Reaxtica).
- Overall: MuMo averages +2.7% over best baseline; rank-1 in 17/21 (TDC + MoleculeNet) and +27% on LD50 from TDC.
- QM datasets: wins 7/10 tasks, robust to conformer sensitivity.
- Broader chemical reaction benchmarks.

Model	HOMO/LUMO/GAP↓	$\alpha\downarrow$	$C_v \downarrow$	$\mu \downarrow \mid$	$R^2 \downarrow$	ZPVE ↓
GROVER-BASE	0.0079 _{3E-04}	2.3650.302	1.1030.339	0.6180.002	113.014.206	0.0035 _{3E-04}
GROVER-LARGE	0.00836 = -04	2.2400.385	0.8530.186	0.6230.006	85.85 6.816	0.00385 e-04
GEM	0.00674E-05	0.5890.0042	0.2370.0137	0.4440.0015	25.67 0.743	0.00112E-05
Uni-Mol	0.00432 E-05	0.3630.009	0.1830.002	0.1550.0015	4.8050.055	0.00113E-05
Uni-Mol2 310M	0.00361E-05	0.3150.003	0.1430.002	0.0920.0013	4.6720.245	0.00051E-05
Uni-Mol2 570M	0.00362E-05	0.3150.004	0.1470.007	0.0890.0015	4.5230.080	0.00053E-05
Uni-Mol2 1.1B	0.00351E-05	0.3050.003	0.1440.002	0.0890.0004	4.2650.067	0.00058e-05
MuMo 505M	0.00301E-05	0.2830.003	0.1260.003	0.4000.0018	18.080.533	0.00051E-05


BHC ($\mathbb{R}^2 \uparrow$, Reaction Yield)		CPA (MAE ↓, CAT	ALYTIC ACTIVITY)	HTE ($R^2 \uparrow$, Reaction Yield)	
Models	Value	Models	VALUE	Models	Value
REAXTICA	0.94	REAXTICA	0.144	REAXTICA	0.87
MFF	0.92	MFF	0.144	RXNFP	0.81
RXNFP	0.95	DENMARK ET AL.	0.152	DRFP	0.85
MuMo	0.9520.002	MuMo	0.1440.000	MuMo	0.8730.002

Insights

Pretraining losses show the effectiveness of modality fusion.

• Attention visualization. From Layer 9, the graph and geometry feature start interacting with the SMILES stream.

Welcome to connect and collaborate!

