

Active Test-time Vision-Language Navigation

Heeju Ko · Sung June Kim · Gyeongrok Oh · Jeongyoon Yoon · Honglak Lee · Sujin Jang · Seungryong Kim · Sangpil Kim*

SAMSUNG

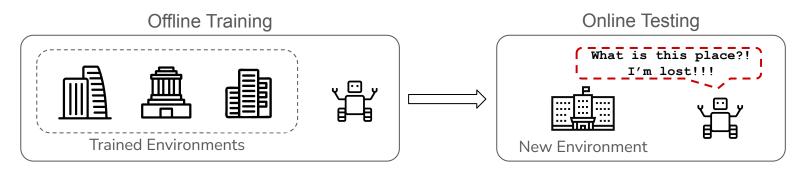
KAIST

Vision-Language Navigation

- Vision-Language Navigation (VLN) is a fundamental task of connecting human interactions with robotic Al systems
- Multimodal task of understanding natural language instruction to navigate visual environment.

Problem formulation

- The discrepancy between **offline training and online testing** environment hinders test-time performance.

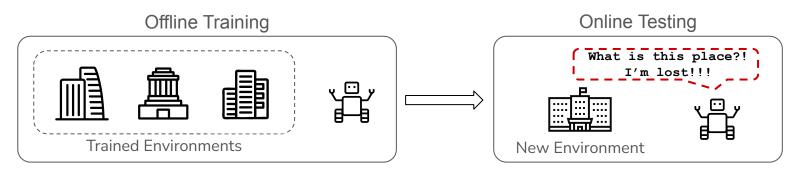


- Possible Solutions

- 1 Enhance generalization during training
 - → Limited to 'anticipating' domain shifts. Can not cover all real-world diversity.
- 2 Zero-shot navigation using LLMs
 - → Low performance. Requires fine-tuning on navigation data for reliable performance.
- 3 Test-time adaptation using entropy minimization
 - → Blindly minimizing entropy without **correct signal** causes overconfidence & error accumulation

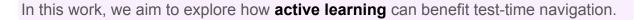
Problem formulation

- The discrepancy between **offline training and online testing** environment hinders test-time performance.



- Possible Solutions
- 1 Enhance generalization during training
 - → Limited to 'anticipating' domain shifts. Can not cover all real-world diversity.
- 2 Zero-shot navigation using LLMs
 - → Can't navigation agents actively interact with humans at test time?
- 3 Test-time adaptation using entropy minimization
 - → Blindly minimizing entropy without **correct signal** causes overconfidence & error accumulation

Research objective



Specifically, we study...

- how active learning can be utilized in the context of test-time vision-language navigation
- how we can improve entropy as a reliable test-time signal
- how agent can learn in the absence of human interaction

Active Test-time Navigation

① Preliminary

Active Learning \rightarrow A learning algorithm that interactively query a human user (or some other information source), to label new data points

Example.

- Traditional AL uses uncertainty sampling with metrics like entropy, margin, and least confidence.
- Initially applied to simple classification, later extended to complex real-world tasks.
- Recently expanded into Test-Time Adaptation (TTA) models adapt during inference using uncertainty estimates.

Active Test-time Adaptation → incorporating limited labeled test instances to enhance overall test time performances.

Active Test-time Navigation

2 What is different?

Active Test-time Navigation requires several constraints:

- Latency: 'Labeling' in navigation task implies a step-wise expert demonstration. Even if it's active learning, labeling the correct action for each time-step is infeasible in test time.
- Accessibility: The interface for human input should be intuitive and require minimal expertise or effort from the end user.

Therefore, in **Active Test-time Navigation**, the oracle provides the agent with...

"Episodic Evaluation"

Active Test-time Navigation

2 How do we use it?



Mixture Action Distribution

- combine predicted action distribution with pseudo-expert distribution via convex combination, enhancing the clarity (sharpness) of actions.

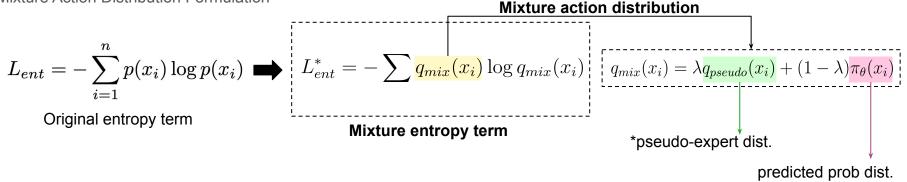
Mixture Entropy Optimization

- minimizing for a successful navigation and maximizing for a failed navigation can help the agent calibrate its confidence more effectively, **reinforcing correct behaviors** while **discouraging erroneous ones**.

NEURAL INFORMATION PROCESSING SYSTEMS

Mixture Entropy Optimization

Mixture Action Distribution Formulation

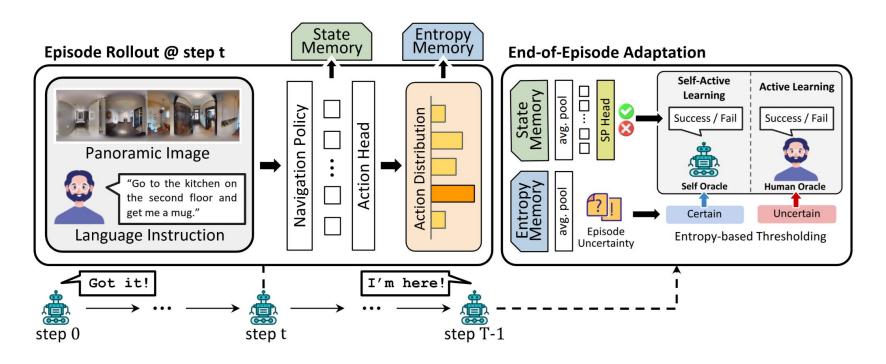


- ☐ Pseudo-Expert Distribution. treat the action taken by the agent as an expert demonstration
- Mixture Action Distribution. combine the original predicted probability distribution and the pseudo-expert distribution with convex combination.
- **Mixture Entropy Optimization.** the adaptation optimizes the sharpened distribution, strongly reinforcing successful predictions while explicitly penalizing failed predictions, thus flattening the distribution.

Self Active Learning

NEURAL INFORMATION PROCESSING SYSTEMS

- Injecting a self-prediction head to predict whether or not the navigation was a success or not.
- Train through test-time stream and use it when human query is inactive.



Experiments

Results on Vision-Language Navigation Datasets

REVERIE Dataset

Methods	Val Seen				Val Unseen				Test Unseen			
	OSR ↑	SR ↑	SPL ↑	RGSPL↑	OSR ↑	SR ↑	SPL↑	$RGSPL \uparrow$	OSR ↑	SR ↑	SPL↑	RGSPL ↑
HAMT [5]	47.65	43.29	40.19	25.18	36.84	32.95	30.20	17.28	33.41	30.40	26.67	13.08
w/ TENT [†] [7]	46.03	43.43	40.78	25.81	32.60	30.56	28.23	14.48	25.06	23.73	21.78	10.82
w/FSTTA [†] [37]	48.21	42.87	39.56	24.58	36.78	32.89	30.51	17.20	33.39	30.39	26.65	13.61
w/ ATENA (Ours)	52.92	57.34	48.08	29.60	38.85	34.00	30.96	17.51	38.19	32.55	28.38	14.32
DUET [4]	73.86	71.75	63.94	51.14	51.07	46.98	33.73	23.03	56.91	52.51	36.06	22.06
w/ TENT	73.72	71.89	64.06	50.41	51.43	47.55	33.99	23.32	57.12	52.61	36.17	22.16
w/ FSTTA	75.59	75.48	65.84	52.23	56.26	54.15	36.41	23.56	58.44	53.40	36.43	22.40
w/ ATENA (Ours)	85.52	84.33	74.31	59.99	71.88	68.11	45.82	31.26	57.74	54.28	40.70	25.01
GOAT [†] [60]	82.36	80.74	73.44	58.82	57.97	53.82	37.52	27.00	61.44	57.72	40.53	26.70
w/ TENT [†]	82.43	80.74	73.47	58.75	57.68	53.51	37.49	26.99	62.00	57.28	39.82	26.97
w/ FSTTA†	82.36	80.74	73.42	58.82	57.94	53.79	37.50	26.95	62.35	57.52	39.49	26.82
w/ ATENA (Ours)	85.03	83.35	76.45	61.60	70.29	67.66	53.15	39.80	64.26	62.03	46.82	31.54

R2R Dataset

Methods		Val	Seen		Val Unseen				
1120110415	TL \	NE↓	SR ↑	SPL ↑	TL↓	NE↓	SR ↑	SPL ↑	
DUET [4]	12.33	2.28	79	73	13.94	3.31	72	60	
w/FSTTA [37]	13.39	2.25	79	73	14.64	3.03	75	62	
w/ ATENA (Ours)	11.27	2.18	80	75	12.31	2.90	75	66	
BEVBert [59]	13.56	2.17	81	74	14.55	2.81	75	64	
w/ FSTTA†	12.28	2.31	80	75	13.96	2.89	74	63	
w/ ATENA (Ours)	10.79	2.26	82	78	12.22	2.78	76	68	
GOAT [†] [60]	11.87	1.70	84.52	79.60	13.43	2.33	77.91	67.34	
w/ FSTTA [†]	11.67	1.65	84.92	80.08	13.26	2.32	77.99	67.48	
w/ ATENA (Ours)	11.66	1.64	85.01	80.13	12.52	2.27	79.01	69.30	

R2R-CE Dataset

Methods		,	Val Seer		Val Unseen					
Wethods	TL \	NE↓	OSR ↑	SR ↑	SPL ↑	TL ↓	NE↓	OSR ↑	SR ↑	SPL ↑
ETPNav [6]	11.78	3.95	72	66	59	11.99	4.71	65	57	49
w/ FSTTA [†] [37]	11.35	3.93	72	66	59	11.57	4.77	64	57	49
w/ ATENA (Ours)	10.81	3.86	72	67	61	12.89	4.53	66	58	49
BEVBert [59]	13.98	3.77	73	68	60	13.27	4.57	67	59	50
w/ FSTTA	14.07	4.11	74	69	60	13.11	4.39	65	60	51
w/ ATENA (Ours)	11.31	3.24	75	71	64	13.48	4.50	67	60	51

Conclusion

Contribution & Novelty

- 1. First to explore how active human-agent interaction at test time improves navigation performance.
- 2. Propose Mixture Entropy Optimization to explicitly reward or penalize the actions.
- 3. Propose Self Active Learning, where agent queries itself for labels at relatively certain navigations.
- → Experimental results show a substantial improvement over the baseline policy.