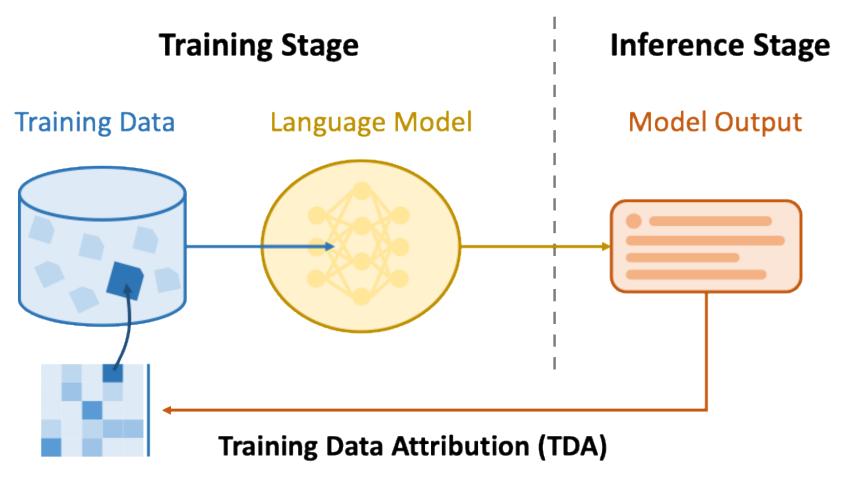


Enhancing Training Data Attribution with Representational Optimization

Weiwei Sun Haokun Liu Nikhil Kandpal Colin Raffel Yiming Yang

Carnegie Mellon University
University of Toronto & Vector Institute

Background: Training Data Attribution



Attribute model outputs to their training data

Background: Training Data Attribution

Mount Everest is 8,848 meters high.

The tower was completed for the 1889 World's Fair in Paris.

Gustave Eiffel's design reached about 1,000 feet in height.

Construction began in 1887 and took two years to finish.

Statue of Liberty was dedicated in 1886.

Tokyo Tower, modeled after Eiffel Tower, is 333 m tall.

At over 300 meters, it remained the world's tallest structure for decades.

The Eiffel Tower was repainted in 2019.

Background: Training Data Attribution

Training Data S LM θ

Train the LM

$$\theta^* = \arg\min_{\theta} \sum_{z_i \in S} \ell(z_i; \theta),$$

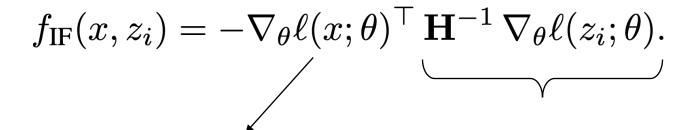
For the model output during inference, X

Actual Outcome
$$\qquad r(x,S) \, = \, \ell(x;\theta^*)$$

TDA Method

Gradient-based TDA

Influence Function



Test Gradient

Training Gradient (curvature-corrected)

Group Influence

$$f_{\text{IF}}(x,S) = \nabla_{\theta} \ell(x,\theta^*)^{\top} \mathbf{H}^{-1} \sum_{z_i \in S} \nabla_{\theta} \ell(z_i,\theta^*)$$

Gradient-based TDA

Influence Function

$$f_{\text{IF}}(x, z_i) = -\nabla_{\theta} \ell(x; \theta)^{\top} \mathbf{H}^{-1} \nabla_{\theta} \ell(z_i; \theta).$$

Test Gradient

Training Gradient (curvature-adjusted)

Speed:

- Calculate inverse hessian
- Calculate gradient

Storage:

Store full gradient of each training point

Gradient-based TDA

Efficient Gradient-based TDA

$$f_{\text{GD}}(x, z_i) = \phi(x)^{\top} \cdot \phi(z_i)$$

$$\phi(z) = \text{norm} \left[\mathbf{H}_{\hat{\theta}}^{-\frac{1}{2}} \nabla_{\hat{\theta}} \ell(z; \theta) \right]_{2}$$

- ❖ [1] Studying large language model generalization with influence functions
- ❖ [2] What is your data worth to gpt? Ilm-scale data valuation with influence functions

Hessian approximation [1] (e.g., FIM)

Gradient projection [2] (e.g., Lora)

Speed:

- Calculate inverse hessian
- Calculate gradient

Storage:

Store full gradient of each training point

+ Tradeoff between efficiency and fidelity

Representation-based TDA

Alternative: Text Representation

$$f_{\mathrm{Rep}}(x,z_i) = \mathrm{Enc}(x)^{ op} \cdot \mathrm{Enc}(z_i)$$
 $ightharpoonup \mathrm{TF-IDF}$
 $ightharpoonup \mathrm{N-Gram}$
 $ightharpoonup \mathrm{Hidden\ States}$
 $ightharpoonup \mathrm{Text\ Embedding}$

Speed:

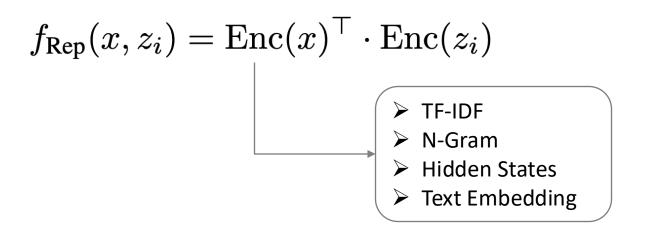
√ High Speed

Storage:

✓ Storage Efficient

Representation-based TDA

Text Representation



None of them are designed for TDA -> Low fidelity!

Speed:

✓ High Speed

Storage:

✓ Storage Efficient

Fidelity:

Low

Our Method: AirRep

Attentive Influence Ranking Representation

$$f_{AirRep}(x, S) = Enc(x)^{\top} \cdot Agg(Enc(z_i) \mid z_i \in S)$$

Optimize Representation for TDA

Speed:

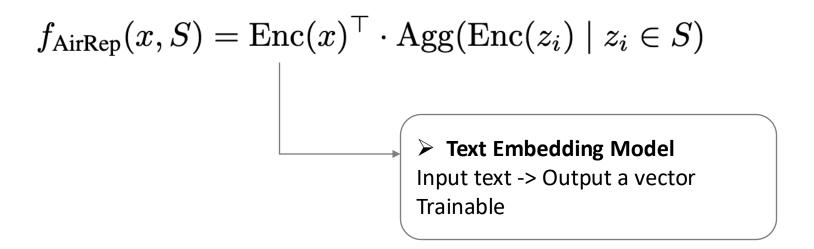
Storage:

Fidelity:

✓ High Speed

✓ Storage Efficient ✓ High

AirRep: Model



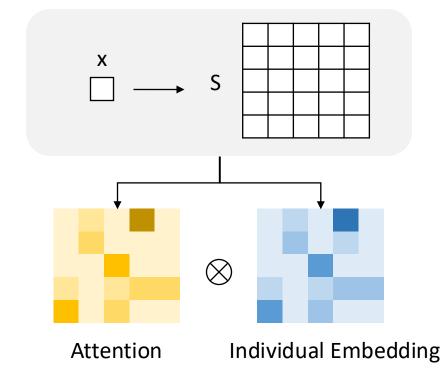
AirRep: Model

$$f_{AirRep}(x, S) = Enc(x)^{\top} \cdot Agg(Enc(z_i) \mid z_i \in S)$$

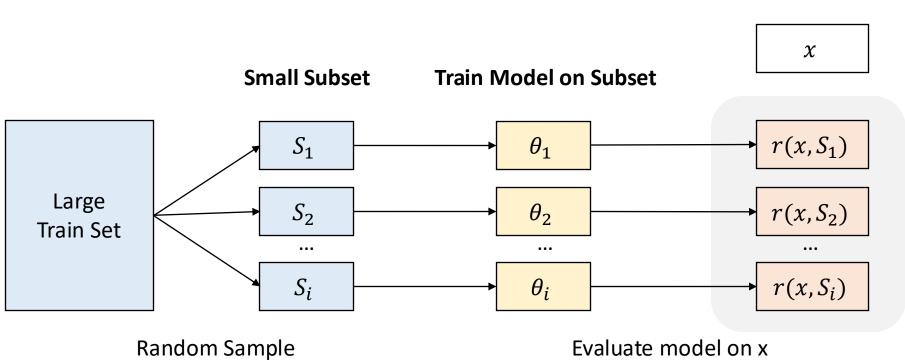
> Attention-based Pooling

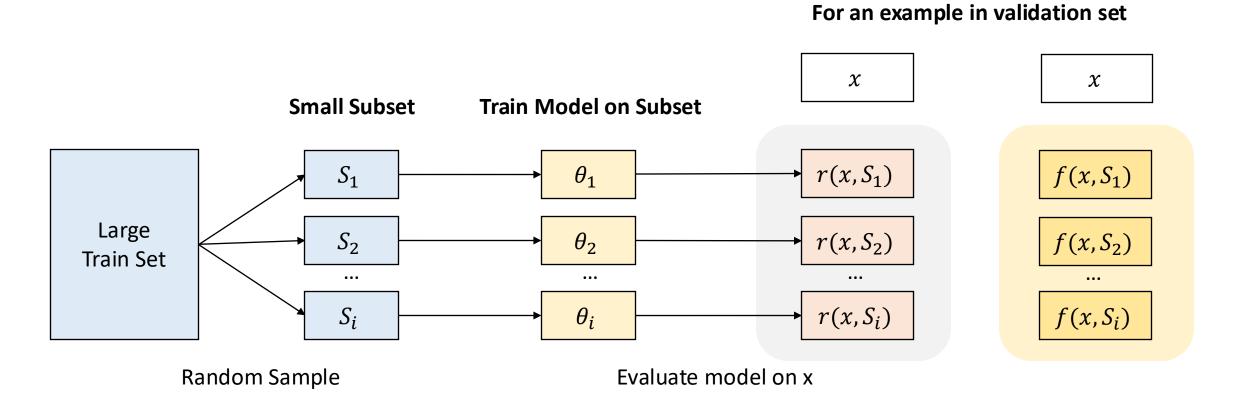
$$f_{ ext{AirRep}}(x,S) = \operatorname{Enc}(x)^ op \cdot \sum_{i=1}^n lpha_i \operatorname{Enc}(z_i),$$

where
$$\alpha_i = \frac{\exp(|\operatorname{Enc}(x)^{\top} \cdot \operatorname{Enc}(z_i)|)}{\sum_{j \in [n]} \exp(|\operatorname{Enc}(x)^{\top} \cdot \operatorname{Enc}(z_i)|)}.$$

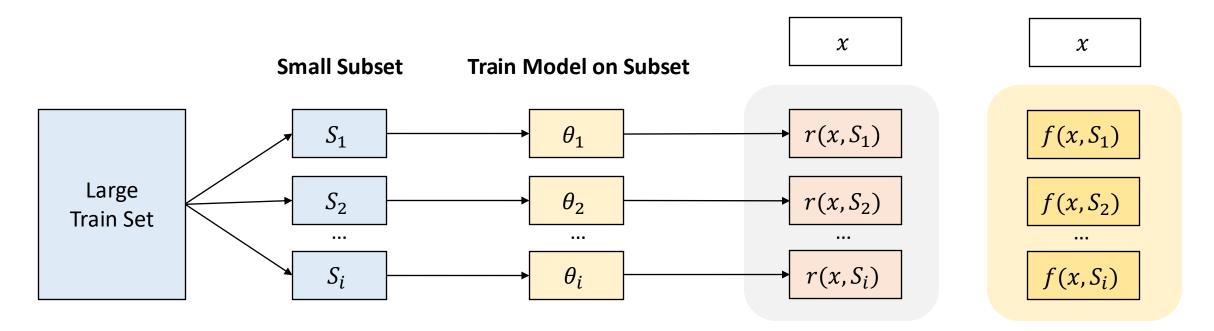


For an example in validation set





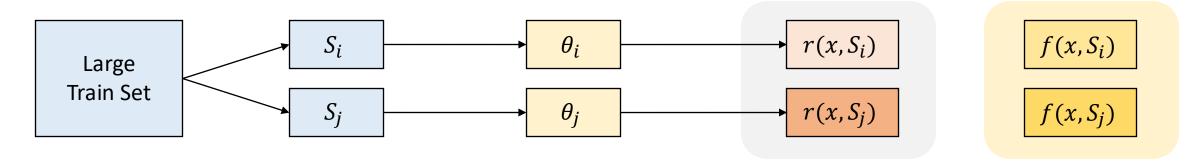
Actual Outcome AirRep Prediction



Actual Outcome

AirRep Prediction

$$\mathcal{L}(x,\mathcal{S}) = -\sum_{i,j \in M} \mathbb{1}_{r_i > r_j} w_{i,j} \log \sigma(f_i - f_j),$$



Actual Outcome

AirRep Prediction

Weighted pairwise ranking loss

$$\mathcal{L}(x,\mathcal{S}) = -\sum_{i,j \in M} \mathbb{1}_{r_i > r_j} w_{i,j} \log \sigma(f_i - f_j),$$

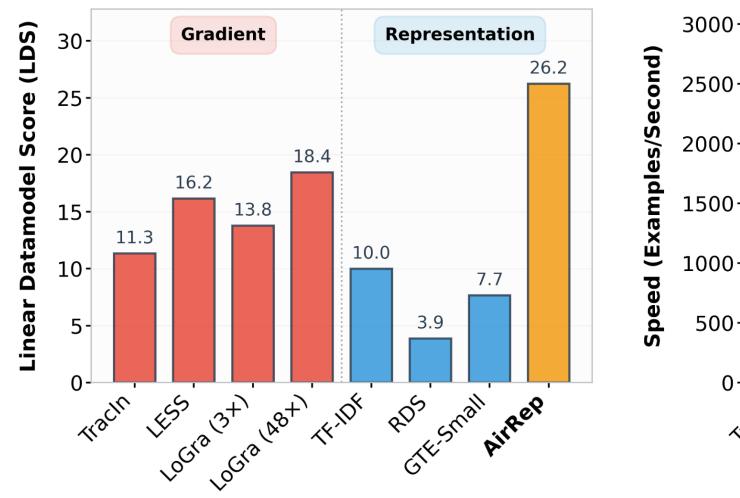
$$r(x,S_j)$$

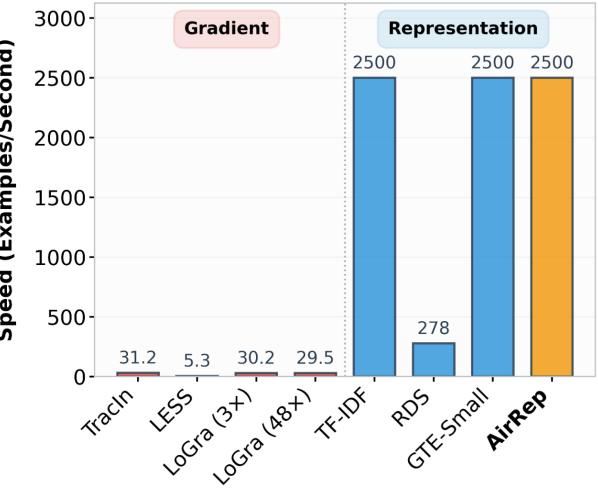
$$> r(x, S_i)$$

we want

$$f(x,S_j)$$

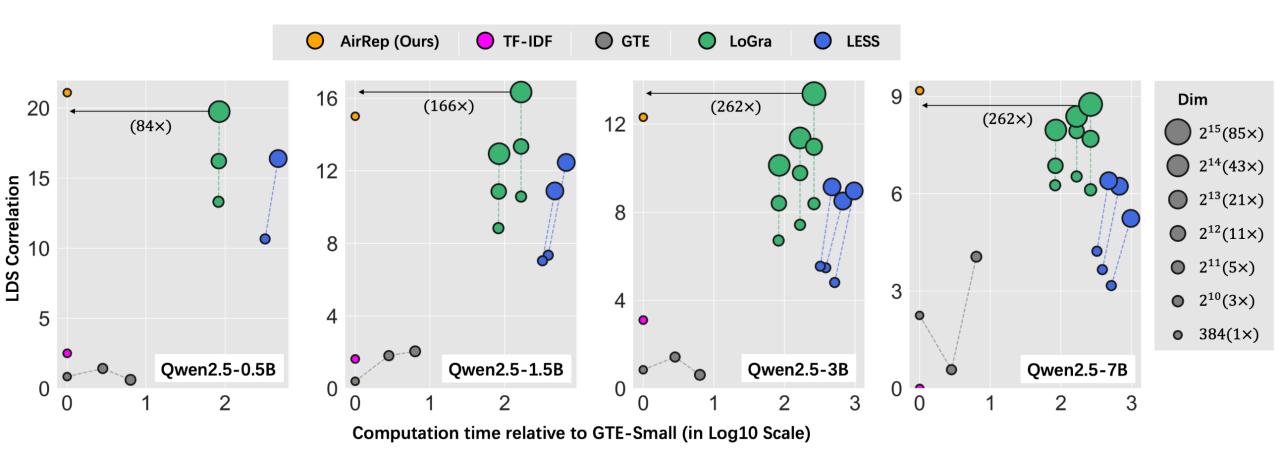
$$f(x,S_i)$$



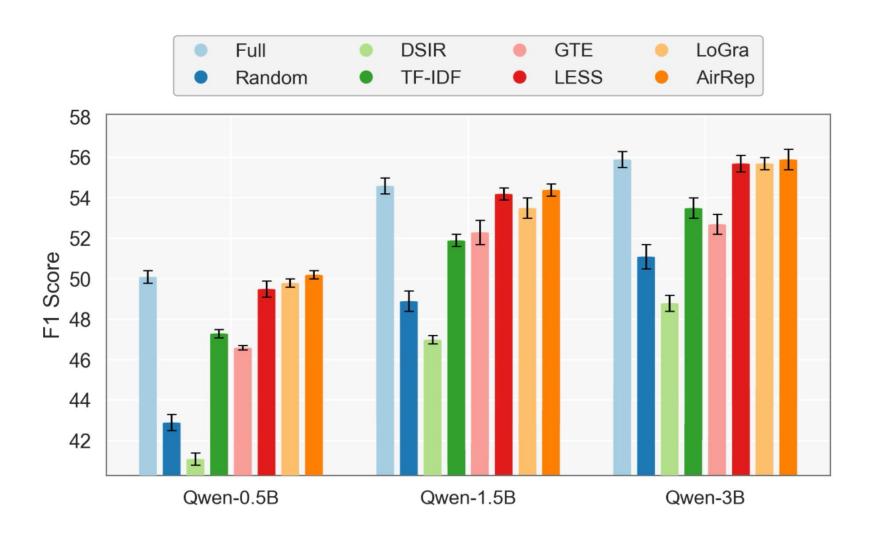


Fidelity

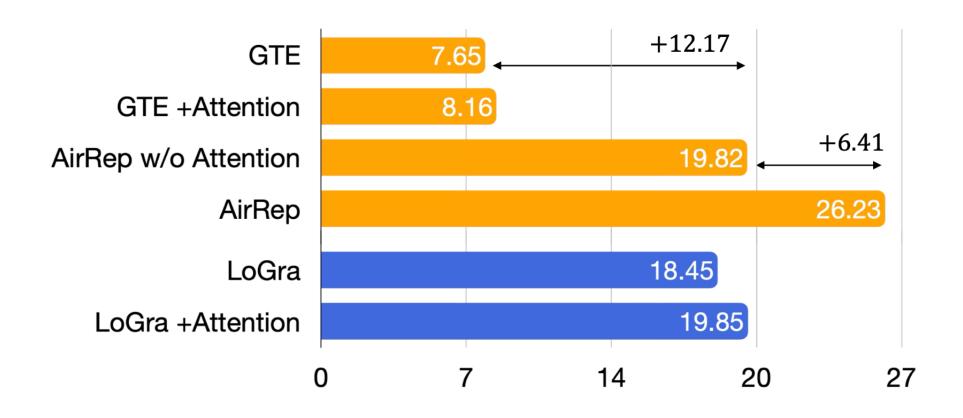
Speed



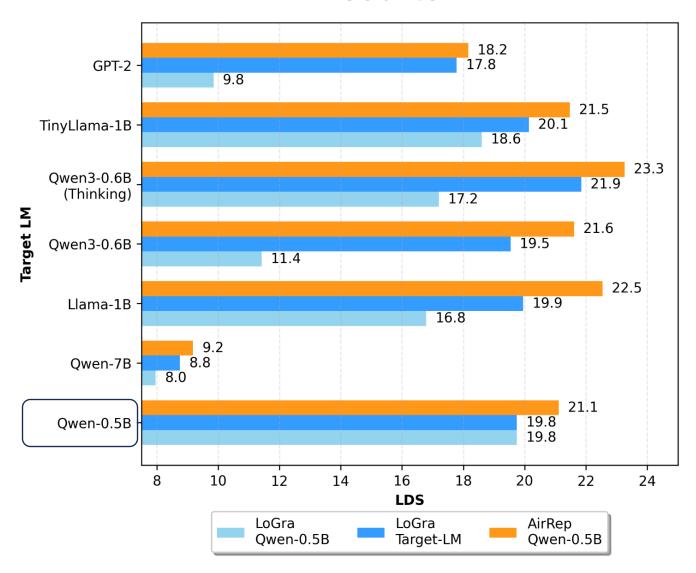
Fidelity vs. Speed Trade-off



Data Selection Evaluation

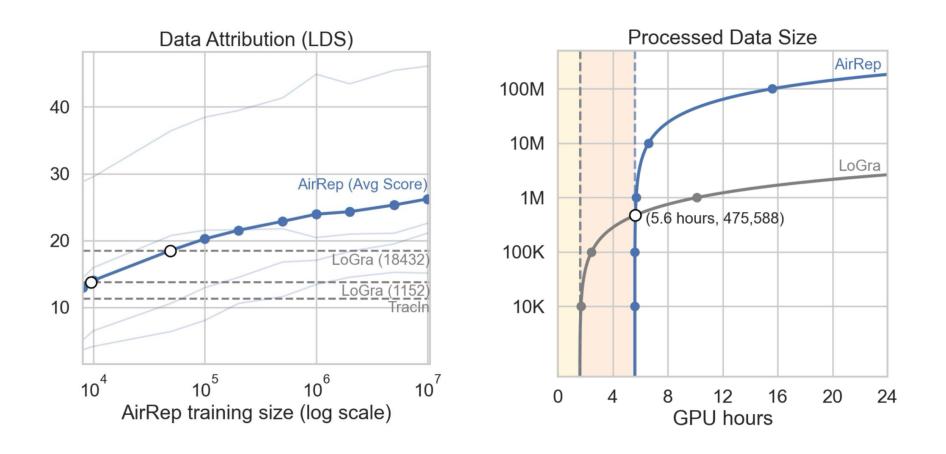


Ablation Study



Generalizability

Training signals are generated from Qwen-0.5B and evaluated on larger or different language models.



Amortizing AirRep Training Cost

Enhancing Training Data Attribution with Representational Optimization

Thank You For Your Attention

Code: https://github.com/sunnweiwei/AirRep

ArXiv: https://arxiv.org/pdf/2505.18513