

KScope: A Framework for Characterizing the Knowledge Status of Language Models

Yuxin Xiao, Shan Chen, Jack Gallifant, Danielle Bitterman, Thomas Hartvigsen, Marzyeh Ghassemi

Motivation: Parametric vs. Contextual Knowledge

Example

Question x:

Who received the first Nobel Prize in physics?

Support Set \mathcal{Y} :

 y_1 Wilhelm Röntgen (WR)

y₂ Marie Curie (MC)

y₃ Albert Einstein (AE)

Parametric Knowledge

- *Marie Curie* was the first woman to win a Nobel Prize.
- The first Nobel Prize in Physics was awarded in 1901 to German physicist *Wilhelm Röntgen* for his discovery of X-rays.
- *Albert Einstein* was awarded the 1921 Nobel Prize in Physics for his work in theoretical physics.
- ..

Motivation: Parametric vs. Contextual Knowledge

Example

Question x:

Who received the first Nobel Prize in physics?

Support Set \mathcal{Y} :

 y_1 Wilhelm Röntgen (WR)

y₂ Marie Curie (MC)

y₃ Albert Einstein (AE)

Supporting Context *C*:

The first Nobel Prize in Physics was awarded to German physicist Wilhelm Röntgen in recognition of the extraordinary services he rendered by the discovery of X-rays.

Contextual Knowledge

- The first Nobel Prize in Physics was awarded in 1901 to *Wilhelm Röntgen*, a German physicist, for his discovery of X-rays.
- In 1901, the inaugural Nobel Prize in Physics went to *Wilhelm Röntgen*, the German scientist who discovered X-rays.
- The very first Nobel Prize in Physics was presented in 1901 to *Wilhelm Röntgen* of Germany, honoring his discovery of X-rays.
- ...

Motivation: Knowledge Conflict

Knowledge Conflict arises

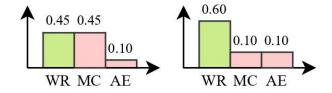
Parametric Knowledge

Sampled Responses from LLM *f*:

- *Marie Curie* was the first woman to win a Nobel Prize.
- The first Nobel Prize in Physics was awarded in 1901 to German physicist *Wilhelm Röntgen* for his discovery of X-rays.
- Albert Einstein was awarded the 1921 Nobel Prize in Physics for his work in theoretical physics.
- ...

Knowledge Conflict resolved

Contextual Knowledge

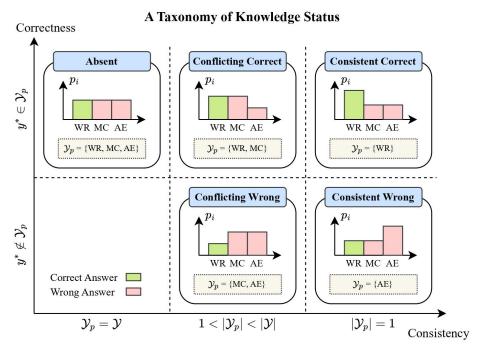

- The first Nobel Prize in Physics was awarded in 1901 to *Wilhelm Röntgen*, a German physicist, for his discovery of X-rays.
- In 1901, the inaugural Nobel Prize in Physics went to *Wilhelm Röntgen*, the German scientist who discovered X-rays.
- The very first Nobel Prize in Physics was presented in 1901 to *Wilhelm Röntgen* of Germany, honoring his discovery of X-rays.
- ...

Motivation: Limitations in Existing Work

Knowledge Conflict arises

Parametric Knowledge

- *Marie Curie* was the first woman to win a Nobel Prize.
- The first Nobel Prize in Physics was awarded in 1901 to German physicist *Wilhelm Röntgen* for his discovery of X-rays.
- *Albert Einstein* was awarded the 1921 Nobel Prize in Physics for his work in theoretical physics.
- ...



- Representing an LLM's knowledge via the most likely response^[1, 2, 3]
 - Overlook the coexistence of multiple competing modes (e.g., WR and MC in the left distribution)
- Entropy-based uncertainty metrics^[4, 5]
 - Capture overall uncertainty instead of mode structure (e.g., the entropy of both distributions ≈ 1.37)

^[3] J. Xie, K. Zhang, J. Chen, R. Lou, and Y. Su. Adaptive chameleon or stubborn sloth: Revealing the behavior of large language models in knowledge conflicts. In ICLR, 2024.

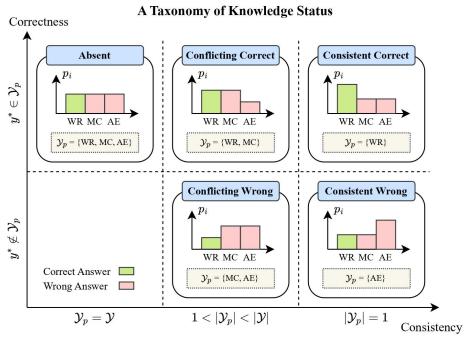
^[4] K. Du, V. Snæbjarnarson, N. Stoehr, J. White, A. Schein, and R. Cotterell. Context versus prior knowledge in language models. In ACL, 2024.

LLM Knowledge Status: Consistency & Correctness

- Knowledge modes \mathcal{Y}_p : a plateau of high-probability elements within the support set that are distinguishable from the rest
- Consistency: how consistent are the model's knowledge modes?

 \circ Consistent: $|\mathcal{Y}_p| = 1$

 \circ Conflicting: $1 < |\mathcal{Y}_p| < |\mathcal{Y}|$


 \circ Absent: $\mathcal{Y}_p = \mathcal{Y}$

• Correctness: does the model's knowledge modes include the correct answer?

 \circ Correct: $y^* \in \mathcal{Y}_p$

Wrong: $y^* \notin \mathcal{Y}_p$

LLM Knowledge Status: Consistency & Correctness

- The true underlying distributions of LLM knowledge are unobservable.
 - Approximate with empirical sample frequencies: N CoT responses from M paraphrases of a given question
- Even under the same knowledge status, models may behave differently.
 - Absent knowledge: (1) refuse to respond in high-stakes applications; (2) hallucinate an invalid response; (3) generate valid responses at random

Empirical Frequency \rightarrow KScope \rightarrow Knowledge Status

Step	Statistical Test	Null Hypothesis	Alternative Hypothesis	If Significant p-value	If Insignificant p-value
(1) Test for the Significance of Invalid Answers	One-Sided Exact Binomial Test	$\mathbb{P}(f(x) \in \mathcal{Y}) = \ \mathbb{P}(f(x) otin \mathcal{Y}) = rac{1}{2}$	$\mathbb{P}(f(x) ot\in\mathcal{Y})>rac{1}{2}$	Absent Knowledge	Proceed ↓

Does the model exhibit a higher tendency to produce invalid responses?

Empirical Frequency \rightarrow KScope \rightarrow Knowledge Status

Step	Statistical Test	Null Hypothesis	Alternative Hypothesis	If Significant p-value	If Insignificant p-value
(1) Test for the Significance of Invalid Answers	One-Sided Exact Binomial Test	$\mathbb{P}(f(x) \in \mathcal{Y}) = \ \mathbb{P}(f(x) otin \mathcal{Y}) = rac{1}{2}$	$\mathbb{P}(f(x) otin\mathcal{Y})>rac{1}{2}$	Absent Knowledge	Proceed ↓
(2) Test for Uniform Guessing	Two-Sided Exact Multinomial Test	$p_i = rac{1}{ \mathcal{Y} }, orall y_i \in \mathcal{Y}$	$p_i eq rac{1}{ \mathcal{Y} }, \exists y_i \in \mathcal{Y}$	Proceed \downarrow	Absent Knowledge

Does the LLM's empirical response distribution significantly deviates from a uniform distribution?

Empirical Frequency \rightarrow KScope \rightarrow Knowledge Status

Step	Statistical Test	Null Hypothesis	Alternative Hypothesis	If Significant p-value	If Insignificant p-value
(1) Test for the Significance of Invalid Answers	One-Sided Exact Binomial Test	$\mathbb{P}(f(x) \in \mathcal{Y}) = \ \mathbb{P}(f(x) otin \mathcal{Y}) = rac{1}{2}$	$\mathbb{P}(f(x) ot\in\mathcal{Y})>rac{1}{2}$	Absent Knowledge	Proceed ↓
(2) Test for Uniform Guessing	Two-Sided Exact Multinomial Test	$p_i = rac{1}{ \mathcal{Y} }, orall y_i \in \mathcal{Y}$	$p_i eq rac{1}{ \mathcal{Y} }, \exists y_i \in \mathcal{Y}$	Proceed \downarrow	Absent Knowledge
(3) Test for Conflicting Knowledge	Likelihood Ratio Test	$p_i = rac{1}{ \mathcal{Y} }, orall y_i \in \mathcal{Y}$	(a) $p_1=p_2=rac{\hat{p}_1+\hat{p}_2}{2}>p_3=\hat{p}_3$ (b) $p_1=p_3=rac{\hat{p}_1+\hat{p}_3}{2}>p_2=\hat{p}_2$ (c) $p_2=p_3=rac{\hat{p}_2+\hat{p}_3}{2}>p_1=\hat{p}_1$	Proceed Accordingly ↓	Absent Knowledge

Refine the model's knowledge mode set to two elements

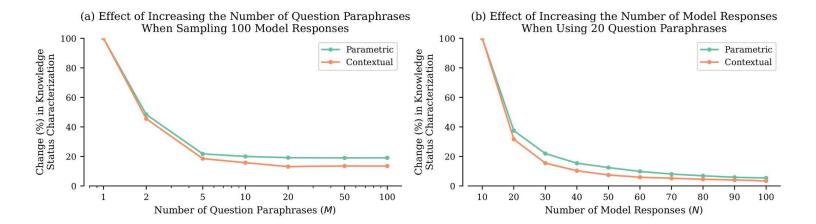
- Reject alternatives whose estimated probabilities violate their own inequality constraints
- If multiple alternatives remain significant after Bonferroni correction, select the one with the lowest BIC
- For larger support sets, repeat this step to remove low-probability elements from the mode set one at a time

Empirical Frequency \rightarrow KScope \rightarrow Knowledge Status

Step	Statistical Test	Null Hypothesis	Alternative Hypothesis	If Significant p-value	If Insignificant p-value				
(1) Test for the Significance of Invalid Answers	One-Sided Exact Binomial Test	$\mathbb{P}(f(x) \in \mathcal{Y}) = \ \mathbb{P}(f(x) otin \mathcal{Y}) = rac{1}{2}$	$\mathbb{P}(f(x) otin\mathcal{Y})>rac{1}{2}$	Absent Knowledge	Proceed ↓				
(2) Test for Uniform Guessing	Two-Sided Exact Multinomial Test	$p_i = rac{1}{ \mathcal{Y} }, orall y_i \in \mathcal{Y}$	$p_i eq rac{1}{ \mathcal{Y} }, \exists y_i \in \mathcal{Y}$	Proceed ↓	Absent Knowledge				
(3) Test for Conflicting Knowledge	Likelihood Ratio Test	$p_i = rac{1}{ \mathcal{Y} }, orall y_i \in \mathcal{Y}$	(a) $p_1=p_2=rac{\hat{p}_1+\hat{p}_2}{2}>p_3=\hat{p}_3$ (b) $p_1=p_3=rac{\hat{p}_1+\hat{p}_3}{2}>p_2=\hat{p}_2$ (c) $p_2=p_3=rac{\hat{p}_2+\hat{p}_3}{2}>p_1=\hat{p}_1$	Proceed Accordingly ↓	Absent Knowledge				
(4) Test for Consistent Knowledge	One-Sided Exact Binomial Test	$p_1'=p_2'=rac{1}{2}$	(a) $p_1' = \frac{\hat{p}_1}{\hat{p}_1 + \hat{p}_2} > p_2' = \frac{\hat{p}_2}{\hat{p}_1 + \hat{p}_2}$ (b) $p_1' = \frac{\hat{p}_1}{\hat{p}_1 + \hat{p}_2} < p_2' = \frac{\hat{p}_2}{\hat{p}_1 + \hat{p}_2}$	Consistent Correct / Wrong Knolwedge (depending on correctness)	Conflicting Correct / Wrong Knowledge (depending on correctness)				

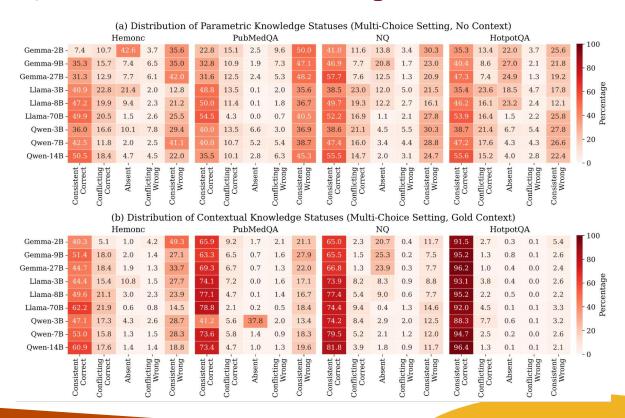
Does the model assigns significantly different probabilities to the two remaining elements?

Experiment Setup

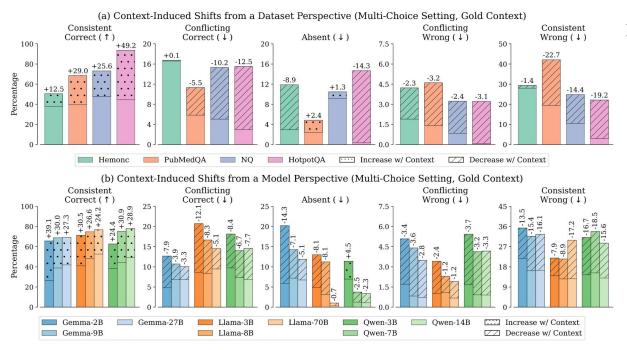

Instruction-tuned LLMs:

• Gemma-2 (2B, 9B, 27B); Llama-3 (3B, 8B, 70B); Qwen-2.5 (3B, 7B, 14B)

Datasets:


- **Hemonc**: 6,212 clinical trial instances comparing treatment regimens, labeled as superior, inferior, or no difference, with PubMed abstracts as context.
- **PubMedQA**: 1,000 biomedical research questions labeled yes, no, or maybe, with supporting PubMed abstracts as context.
- NQ: 3,596 Google search queries, retrieving Wikipedia pages as context.
- **HotpotQA**: 6,119 multi-hop reasoning questions in the general domain, with sentence-level supporting facts from Wikipedia as context.

Experiment Setup


Hyperparameter Search (Llama-8B on Hemonc):

• The percentage of status changes stabilizes after collecting N = 100 model responses using M = 20 paraphrases per question.

Multi-Choice Setting*:

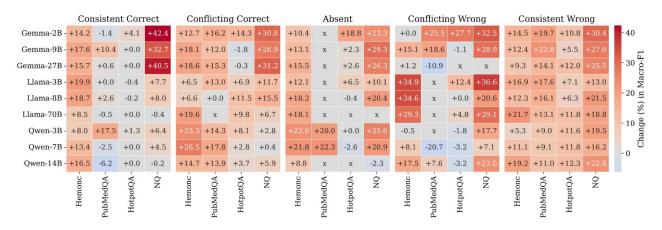
- Most LLMs exhibit the highest proportion of consistent correct parametric knowledge status.
- This proportion is further increased when supporting context is provided.
- A few exceptions.

Multi-Choice Setting*:

- Supporting context increases the proportion of consistent correct knowledge across all datasets and models.
- The Llama family and larger models within each family achieve higher proportions of consistent correct knowledge.
- The gaps narrow with context.

(a) Parametric Knowledge (Multi-Choice Setting, No Context)							(b) Contextual Knowledge(Multi-Choice Setting, Gold Context)						(c) Contextual Knowledge (Multi-Choice Setting, Noisy Context)					(d) Parametric Knowledge (Open-Ended Setting, No Context)					(e) Contextual Knowledge (Open-Ended Setting, Gold Context)					
Gemma-2B -	35.3	13.4	22.0	3.7	25.6	91.5	01.5 2.7 0.3 0.1 5.4 62			62.6	5.7	7.4	1.3	23.0	31.2	15.4	50.3	1.0	2.0	87.2	5.9	4.3	0.3	2.3	100			
Gemma-9B -		8.6	27.0	2.1	21.8	95.2	1.3	8.0	0.1	2.6	62.6	3.0	24.9	0.5	9.1	29.2	6.0	60.8	8.0	3.2	88.7	2.2	4.9	0.2	4.0	- 80		
Gemma-27B -	47.3	7.4	24.9	1.3	19.2	96.2	1.0	0.4	0.0	2.4	64.6	2.7	22.3	0.4	9.9	35.2	5.9		0.9	3.4	88.5	2.1	4.7	0.2	4.4			
Llama-3B -	35.4	23.6	18.5	4.7	17.8	93.1	3.8	0.4	0.0	2.6	60.0	8.7	22.2	8.0	8.3	48.1	37.2	10.0	2.3	2.3	83.7	12.1	2.5	0.4	1.3	age 09-		
Llama-8B -	46.2	16.1	23.2	2.4	12.1	95.2	2.2	0.5	0.0	2.2	66.6	5.3	21.8	0.5	5.7	57.5	31.5	4.6	2.7	3.7	88.6	5.5	3.4	0.3	2.3	ent		
Llama-70B -	53.9	16.4	1.5	2.2	25.8	92.0	4.5	0.1	0.1	3.3	73.1	10.3	0.4	1.2	15.0	67.3	9.7	8.9	2.6	11.3	88.4	1.8	4.6	0.1	4.9	- 40 De		
Qwen-3B -	38.7	21.4	6.7	5.4	27.8	88.3	7.7	0.6	0.1	3.2	57.9	14.7	8.9	3.6	14.9	47.0	36.1	9.9	3.5	3.6	84.7	9.7	3.6	0.2	1.8			
Qwen-7B -	47.2	17.6	4.3	4.3	26.6	94.7	2.5	0.2	0.0	2.6	69.1	8.4	4.4	2.2	15.9	54.7	24.0	10.1	5.3	5.9	88.4	4.3	4.0	0.3	3.0	- 20		
Qwen-14B -	55.6	15.2	4.0	2.8	22.4	96.4	1.3	0.1	0.1	2.1	72.4	6.6	6.1	1.1	13.8	52.8	14.5	22.4	2.8	7.5	90.1	3.3	4.3	0.1	2.1	0		
	Consistent Correct	Conflicting	Absent -	Conflicting Wrong	Consistent Wrong	Consistent Correct	Conflicting Correct	Absent -	Conflicting - Wrong -	Consistent Wrong	Consistent	Conflicting Correct	Absent -	Conflicting Wrong	Consistent Wrong	Consistent	Conflicting Correct	Absent -	Conflicting Wrong	Consistent Wrong	Consistent Correct	Conflicting Correct	Absent -	Conflicting Wrong	Consistent Wrong	- 0		

Multi-Choice Setting* with Noisy Context (fullwiki setting in HotpotQA):

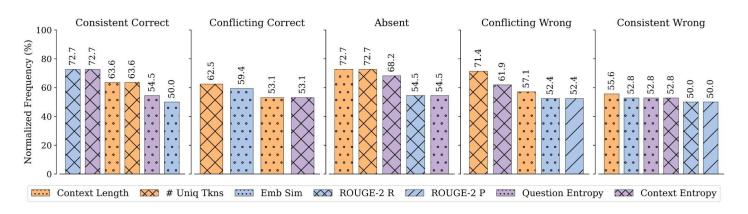

- Noisy context in (c) results in a much lower success rate of updating models to consistent correct knowledge compared to gold context in (b).
- When the retrieved noisy context lacks evidence for the ground-truth answer, models either refuse to answer, leading to more absent knowledge, or are misled into producing consistently incorrect answers.

(a) Parametric Knowledge (Multi-Choice Setting, No Context)						(b) Contextual Knowledge (Multi-Choice Setting, Gold Context)						(c) Contextual Knowledge (Multi-Choice Setting, Noisy Context)					(d) Parametric Knowledge (Open-Ended Setting, No Context)					(e) Contextual Knowledge (Open-Ended Setting, Gold Context)					
Gemma-2B -	35.3	13.4	22.0	3.7	25.6	91.5	5 2.7 0.3 0.1 5.4			62.6	5.7	7.4	1.3	23.0	31.2	15.4	50.3	1.0	2.0	87.2	5.9	4.3	0.3	2.3	100		
Gemma-9B -		8.6	27.0	2.1	21.8	95.2	1.3	8.0	0.1	2.6	62.6	3.0	24.9	0.5	9.1	29.2	6.0	60.8	8.0	3.2	88.7	2.2	4.9	0.2	4.0	- 80	
Gemma-27B -	47.3	7.4	24.9	1.3	19.2	96.2	1.0	0.4	0.0	2.4	64.6	2.7	22.3	0.4	9.9	35.2	5.9	54.5	0.9	3.4	88.5	2.1	4.7	0.2	4.4		
Llama-3B -	35.4	23.6	18.5	4.7	17.8	93.1	3.8	0.4	0.0	2.6	60.0	8.7	22.2	8.0	8.3	48.1	37.2	10.0	2.3	2.3	83.7	12.1	2.5	0.4	1.3	ntage	
Llama-8B -	46.2	16.1	23.2	2.4	12.1	95.2	2.2	0.5	0.0	2.2	66.6	5.3	21.8	0.5	5.7	57.5	31.5	4.6	2.7	3.7	88.6	5.5	3.4	0.3	2.3	ent	
Llama-70B -	53.9	16.4	1.5	2.2	25.8	92.0	4.5	0.1	0.1	3.3	73.1	10.3	0.4	1.2	15.0	67.3	9.7	8.9	2.6	11.3	88.4	1.8	4.6	0.1	4.9	- 40 Di	
Qwen-3B -	38.7	21.4	6.7	5.4	27.8	88.3	7.7	0.6	0.1	3.2	57.9	14.7	8.9	3.6	14.9	47.0	36.1	9.9	3.5	3.6	84.7	9.7	3.6	0.2	1.8		
Qwen-7B -	47.2	17.6	4.3	4.3	26.6	94.7	2.5	0.2	0.0	2.6	69.1	8.4	4.4	2.2	15.9	54.7	24.0	10.1	5.3	5.9	88.4	4.3	4.0	0.3	3.0	- 20	
Qwen-14B -	55.6	15.2	4.0	2.8	22.4	96.4	1.3	0.1	0.1	2.1	72.4	6.6	6.1	1.1	13.8	52.8	14.5	22.4	2.8	7.5	90.1	3.3	4.3	0.1	2.1		
	Consistent Correct	Conflicting	Absent -	Conflicting Wrong	Consistent	Consistent	Conflicting	Absent -	Conflicting Wrong	Consistent	Consistent	Conflicting Correct	Absent -	Conflicting Wrong	Consistent Wrong	Consistent	Conflicting Correct	Absent -	Conflicting Wrong	Consistent Wrong	Consistent Correct	Conflicting Correct	Absent -	Conflicting Wrong	Consistent Wrong	- 0	

Open-Ended Setting with Gold Context (HotpotQA):

- Semantically cluster model responses using gemma-2-9b-it, then treat the clusters as the support set \mathcal{Y} and apply KScope accordingly.
- Without pre-defined options or contextual support, Gemma often refuses to answer, leading to a higher proportion of absent knowledge in (d), whereas Llama and Qwen mostly show the opposite trend.
- Gold context still significantly boosts consistent correct knowledge in the open-ended setting in (e), though the improvement is smaller than in the multi-choice setting in (b).

Q2: What Context Features Drive the Desired Knowledge Update?

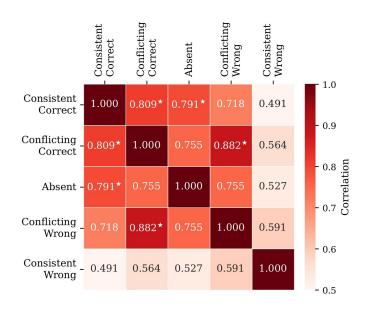

Context Features:

- **Difficulty**: (1) Context Length; (2) Readability; (3) Number of Unique Tokens
- Relevance: (4) Embedding Similarity; (5-7) ROUGE-2 Recall, Precision, and F1
- Familiarity: (8-9) Question and Context Perplexity; (10-11) Question and Context Entropy

Binary Classification Task for each (dataset, LLM, initial parametric knowledge status)

- Binary Label: successful knowledge update with context
- Logistic regression: outperforming a dummy baseline in Macro-F1 (extreme class imbalance)

Q2: What Context Features Drive the Desired Knowledge Update?


Feature Importance Analysis:

- **Absolute SHAP Values**: averaged within each (dataset, LLM, initial parametric knowledge status)
- **Frequency-based Ranking**: normalized frequency with which each feature appears among the top five most important features across datasets and LLMs

Analysis Results:

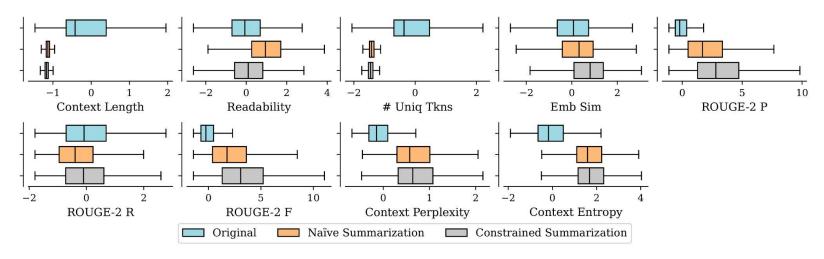
- The results include features all three categories: difficulty, relevance, and familiarity.
- Across all statuses, context length and entropy consistently rank among the most important features.

Q2: What Context Features Drive the Desired Knowledge Update?

Do LLMs in distinct parametric knowledge statuses prioritize context features similarly?

- Statistically significant rank correlation <u>between consistent</u> <u>correct and both conflicting correct and absent knowledge</u>
 - Confirmation bias: when context at least partially aligns with the model's knowledge modes
- Statistically significant rank correlation <u>between conflicting</u> <u>correct and conflicting wrong</u>
 - Similar feature preferences during knowledge conflict
- The <u>consistent wrong status</u> shows relatively low correlations with <u>others</u>
 - Overcoming a firmly held wrong belief may require different context features

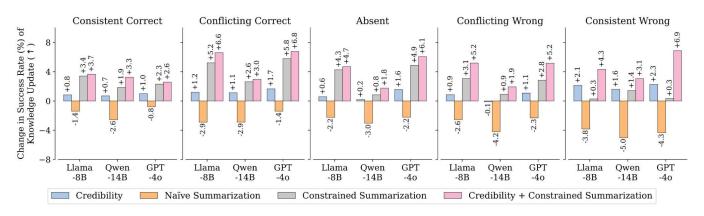
Q3: What Context Augmentations Work Best Across Knowledge Statuses?


Context Augmentation Strategies:

- Credibility^[6]: include metadata; instruct LLMs to prioritize the credible context
- Naïve Summarization: leverage GPT-40 to directly summarize context
- **Constrained Summarization**: guide summarization with additional constraints based on feature analysis results
 - Reduce context length and the number of unique tokens
 - Preserve semantic content, token-level overlap with questions, and fluency
- **Combined**: Credibility + Constrained Summarization

How does each augmentation strategy affect the success rate of knowledge updates?

- Llama-8B and Qwen-14B (included in our feature analysis)
- **GPT-40** (to test the generalization of our findings)


Q3: What Context Augmentations Work Best Across Knowledge Statuses?

Change in Feature Space (Llama-8B on Hemonc):

- Both summarization methods reduce context length and the number of unique tokens, while increasing context perplexity and entropy.
- Naïve summarization fails to preserve fluency and key semantic content, resulting in harder readability and lower ROUGE-2 recall.
- Constrained summarization improves embedding similarity, ROUGE-2 precision, and F1 more effectively.

Q3: What Context Augmentations Work Best Across Knowledge Statuses?

Effectiveness of Context Augmentation:

- **Credibility** is more effective for the consistent wrong status.
- Naïve summarization always hurts the performance.
- Constrained summarization improves the success rate across all knowledge statuses except the consistent wrong status.
- **Integrating credibility metadata into constrained summarization** improves the success rate by 4.3% on average across LLMs and statuses, and generalizes well to GPT-4o.

Conclusion

Contributions:

- Define a taxonomy of five knowledge statuses based on consistency and correctness, and propose KScope, a hierarchical testing framework to characterize LLM knowledge status
- Apply KScope to nine LLMs across four datasets, and establish that supporting context substantially narrows knowledge gaps across model sizes and families
- Identify key context features related to difficulty, relevance, and familiarity that drive successful knowledge updates
- Reveal how LLM feature importance differs based on parametric knowledge status, showing similarity under conflict but divergence when consistently wrong
- Validate that constrained context summarization, combined with improved credibility, substantially boosts successful knowledge updates across all statuses and generalizes well

Broader Impacts:

- A formal framework for characterizing LLM knowledge status
- Help to distinguish between hallucinations due to absent knowledge and uncertainty due to knowledge conflicts

Thank you!

