Zero-shot Denoising via Neural Compression Theoretical and algorithmic framework

Ali Zafari* Xi Chen* Shirin Jalali

Department of Electrical and Computer Engineering Rutgers University

NeurIPS 2025 (Spotlight)

Denoising

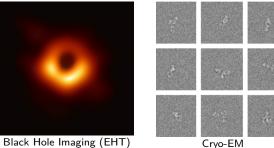
- Decades-old fundamental problem in signal processing and machine learning:
 - Recover $\mathbf{x} = (x_1, \dots, x_n)$ from noisy observations $\mathbf{y} = (y_1, \dots, y_n)$, where $\mathbf{y} \sim \prod_{i=1}^n p(y_i \mid x_i)$

Denoising

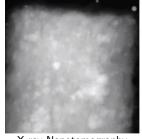
- Decades-old fundamental problem in signal processing and machine learning:
 - Recover $\mathbf{x} = (x_1, \dots, x_n)$ from noisy observations $\mathbf{y} = (y_1, \dots, y_n)$, where $\mathbf{y} \sim \prod_{i=1}^n p(y_i \mid x_i)$
- Deep learning has led to a renewed interest in denoising
 - Learning-based denoising achieves state-of-the-art performance across a wide range of denoising tasks

Zero-shot denoising

- Learning-based denoisers require large datasets of paired (noisy, clean) images for training.
- In many imaging domains (e.g., astronomy, biomedical):
 - data acquisition is expensive;
 - no direct access to ground truth.



Black Hole Imaging (EHT)



X-ray Nanotomography

Literature

```
Zero-shot denoising = Learning based denoising without access to any separate training dataset
```

- Zero-shot denoisers
 - Neural net as regularizer
 Deep Image Prior [Dmitry et al., 2020], Deep Decoder [Heckel et al., 2019]
 - Masked pixel training
 Zero-shot Noise2Self [Batson et al., 2019], Self2Self [Quan et al., 2020]
 - Pseudo-generated noisy pairs
 Zero-shot Noise2Noise [Mansour et al., 2023], Pixel2Pixel [Ma et al., 2025]

Literature

Zero-shot denoising

=

Learning based denoising without access to any separate training dataset

Zero-shot denoisers

- Neural net as regularizer
 Deep Image Prior [Dmitry et al., 2020], Deep Decoder [Heckel et al., 2019]
- Masked pixel training
 Zero-shot Noise2Self [Batson et al., 2019], Self2Self [Quan et al., 2020]
- Pseudo-generated noisy pairs
 Zero-shot Noise2Noise [Mansour et al., 2023], Pixel2Pixel [Ma et al., 2025]

Drawbacks

- Sub-optimal performance
- Overfitting issue in neural net regularization methods
- Discarding most useful info in mask-based approaches
- Resolution mismatch in pseudo-generated pairs method

Compression-based denoising

Lossy compression of noisy signal at a distortion adjusted to noise power

```
≡ denoising
```

- Theoretical foundations of compression-based denoising:
 - Minimum Kolmogorov Complexity Estimator [Donoho, 2002]
 - Universal denoising of discrete-valued sources [Weissman et al., 2005]

Compression-based denoising

Lossy compression of noisy signal at a distortion adjusted to noise power

```
≡ denoising
```

- Theoretical foundations of compression-based denoising:
 - Minimum Kolmogorov Complexity Estimator [Donoho, 2002]
 - Universal denoising of discrete-valued sources [Weissman et al., 2005]
- Despite theoretical foundations, it has not led to practical denoising methods.

Compression-based denoising

Lossy compression of noisy signal at a distortion adjusted to noise power

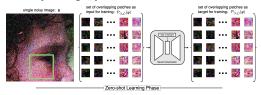
```
≡ denoising
```

- Theoretical foundations of compression-based denoising:
 - Minimum Kolmogorov Complexity Estimator [Donoho, 2002]
 - Universal denoising of discrete-valued sources [Weissman et al., 2005]
- Despite theoretical foundations, it has not led to practical denoising methods.
- Emergence of neural compression encourages us to revisit the compression-based denoising.

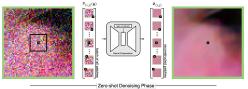
Proposed method: ZS-NCD

Zero Shot – **Neural Compression Denoiser (ZS-NCD)**

• Training phase. Train a neural compression on patches (e.g., 8×8) extracted from noisy image y



 Denoising phase. Independently compress patches and reconstruct by averaging overlaps



Our contributions

Theoretical contributions:

- Finite-sample error bounds for compression-based denoising
 - Additive white Gaussian Noise (AWGN)
 - Signal-dependent Poisson noise
 - Matching the minimax rate for k-sparse vectors under AWGN

Our contributions

Theoretical contributions:

- Finite-sample error bounds for compression-based denoising
 - Additive white Gaussian Noise (AWGN)
 - Signal-dependent Poisson noise
 - Matching the minimax rate for *k*-sparse vectors under AWGN

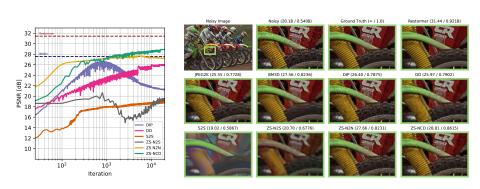
Algorithmic contributions:

 Introduced ZS-NCD that achieves state-of-the-art performance in both AWGN and Poisson denoising with synthesized and real-world noise.

ZS-NCD vs. Other zero-shot denoisers

ZS-NCD:

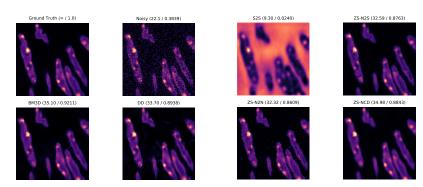
- Enjoys extended training iterations (robust to overfitting)
- Achieves state-of-the-art performance
- Maintains superior performance under distribution shifts



Extensive experiments on (non-)natural images

Noise Parameter		AWGN, $\mathcal{N}(0, \sigma^2)$			Poisson, $Poisson(\alpha x)/\alpha$		
σ or α	Method	Set11	Set13	Kodak24	Set11	Set13	Kodak24
25	JPEG2K	24.91 / 0.6997	24.32 / 0.6676	25.43 / 0.6550	23.03 / 0.6108	22.65 / 0.5952	23.58 / 0.5680
	BM3D	29.79 / 0.8523	28.81 / 0.8213	29.98 / 0.8092	22.70 / 0.5741	22.17 / 0.5992	24.13 / 0.5931
	DIP	26.60 / 0.7128	27.85 / 0.7837	28.90 / 0.7738	24.94 / 0.6512	26.13 / 0.7289	27.49 / 0.7243
	DD	26.93 / 0.7530	27.40 / 0.7832	27.62 / 0.7496	25.48 / 0.7022	26.04 / 0.7373	26.56 / 0.7060
	S2S	23.32 / 0.7306	17.95 / 0.5998	20.69 / 0.6949	23.40 / 0.7355	20.18 / 0.6927	23.09 / 0.7674
	ZS-N2S	27.30 / 0.7971	20.39 / 0.6200	20.89 / 0.6156	26.01 / 0.7478	21.19 / 0.6312	21.47 / 0.6277
	ZS-N2N	27.18 / 0.7173	28.36 / 0.8001	29.54 / 0.7798	25.40 / 0.6432	26.75 / 0.7455	28.21 / 0.7374
	ZS-NCD	28.93 / 0.8079	29.33 / 0.8351	30.60 / 0.8144	27.10 / 0.7431	27.60 / 0.7827	28.77 / 0.7677

more noise levels can be found in the paper.



Takeaways

- Zero-shot denoising via neural compression provides an effective denoising solution, especially in applications with no paired training data.
- Opens a new research direction: Applying neural compression to a wide range of inverse problems.

