



# DOVE: Efficient One-Step Diffusion Model for Real-World Video Super-Resolution

Zheng Chen<sup>1\*</sup>, Zichen Zou<sup>1\*</sup>, Kewei Zhang<sup>1</sup>, Xiongfei Su<sup>3</sup>, Xin Yuan<sup>4</sup>, Yong Guo<sup>5</sup>, Yulun Zhang<sup>1†</sup>

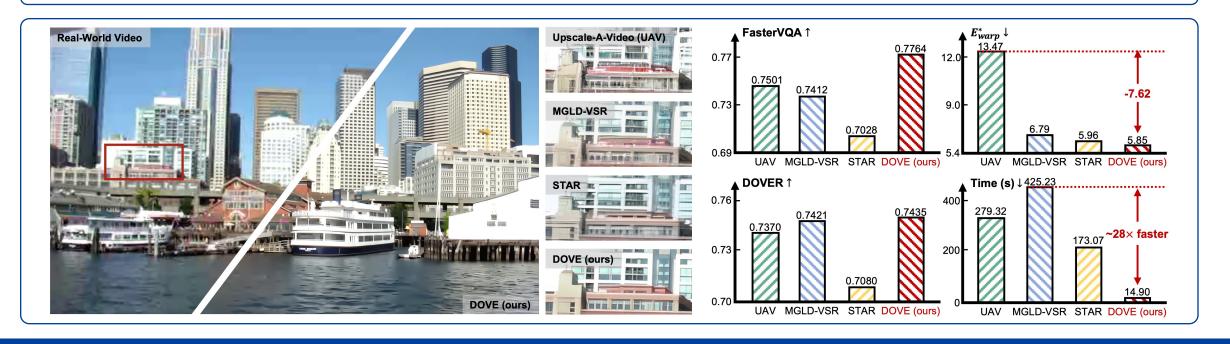
<sup>1</sup>School of Computer Science, Shanghai Jiao Tong University, <sup>2</sup>Zhiyuan College, Shanghai Jiao Tong University,

<sup>3</sup>China Mobile Research Institute, <sup>4</sup>Westlake University, <sup>5</sup>Huawei Consumer Business Group







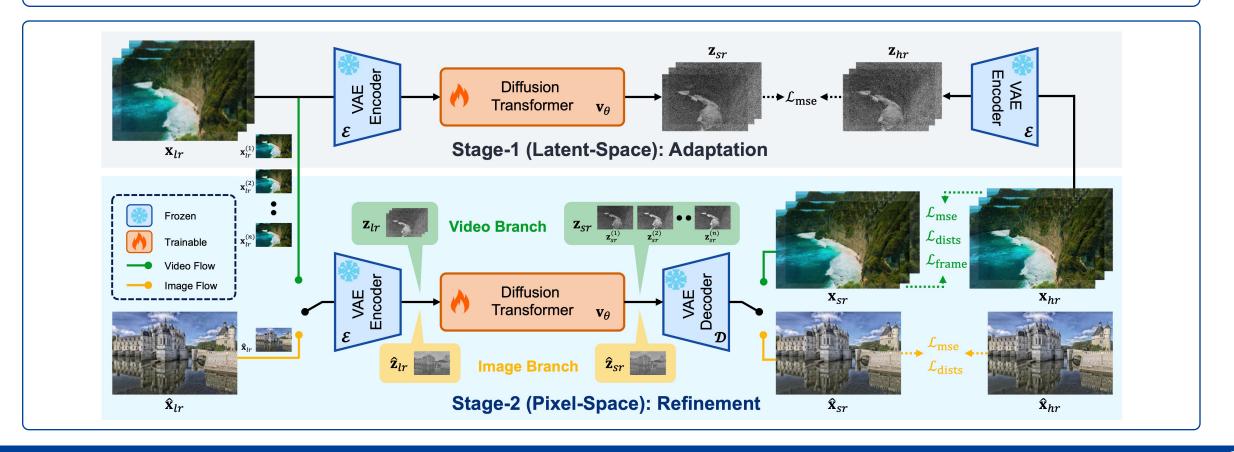



#### Introduction



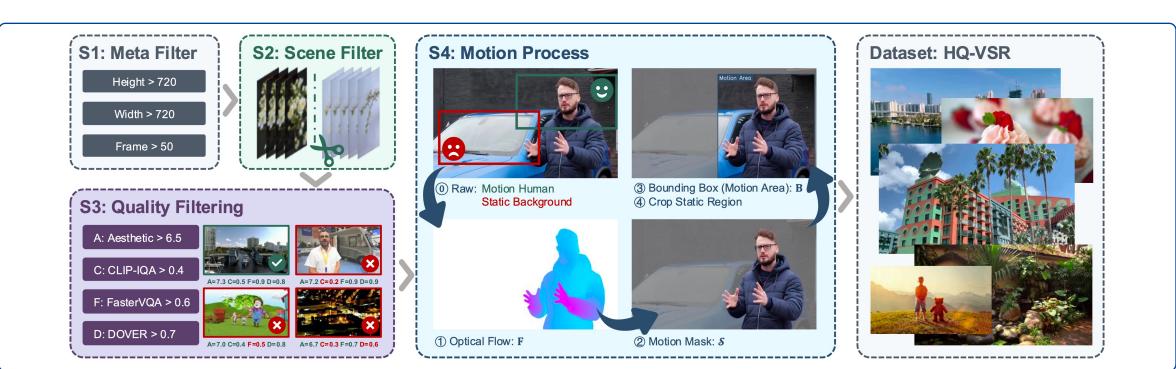
#### **Overview**

- Diffusion models show strong potential in video super-resolution (VSR).
- Existing methods suffer from multi-step sampling and extra modules.
- We propose **DOVE**, an efficient one-step diffusion model for VSR.
- DOVE delivers up to 28× faster than previous diffusion-based methods.




## Method




#### **Latent-Pixel Training Strategy**

- Stage 1 (latent-space): Learn LR→HR mapping by minimizing latent differences.
- Stage 2 (pixel-space): Refine details via mixed image/video training in pixel level.

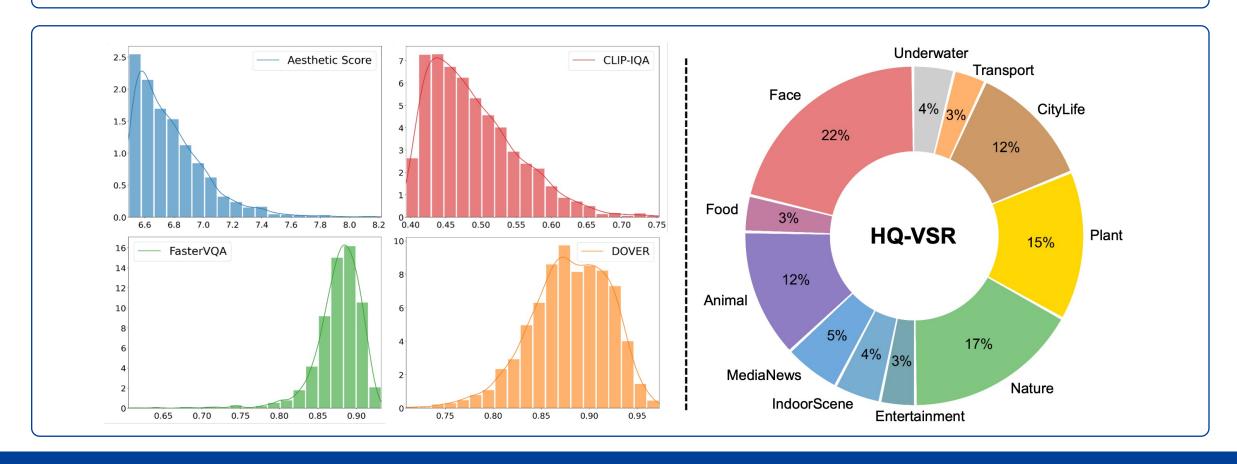


### Method





#### **Video Processing Pipeline**


- A systematic **pipeline** to curate high-quality videos for VSR fine-tuning.
- Include four steps: metadata, scene, quality, and motion filtering.
- Construct **HQ-VSR**, a dataset of 2,055 high-quality videos.

## **HQ-VSR**



## Video Processing Pipeline

- Quality diversity: High and diverse scores across multiple metrics.
- Scene coverage: Covers 11 scene categories, improving model generalization.





| Training Stage                    | <b>S</b> 1                          | S1+S2-I                             | S1+S2-I/V                                                |
|-----------------------------------|-------------------------------------|-------------------------------------|----------------------------------------------------------|
| PSNR ↑ LPIPS ↓ CLIP-IQA ↑ DOVER ↑ | 27.20<br>0.3037<br>0.3236<br>0.6154 | 26.39<br>0.2784<br>0.5085<br>0.7694 | 26.48<br><b>0.2696</b><br><b>0.5107</b><br><b>0.7809</b> |

## **Training Strategy**

- **Stage-1:** produce smooth results.
- Stage-2: better perceptual quality.
- **Mixed training:** enhances temporal consistency performance.

## Image Ratio

Mixed image/video training ( $\phi = 0.8$ ) achieves the best balance of quality and stability.

| Image Ratio | 0% (video) | 20%    | 50%    | 80%    | 100% (image) |
|-------------|------------|--------|--------|--------|--------------|
| PSNR ↑      | 26.41      | 26.41  | 26.44  | 26.48  | 26.39        |
| LPIPS ↓     | 0.2624     | 0.2617 | 0.2686 | 0.2696 | 0.2784       |
| CLIP-IQA ↑  | 0.4800     | 0.5012 | 0.5027 | 0.5107 | 0.5085       |
| DOVER ↑     | 0.7647     | 0.7701 | 0.7751 | 0.7809 | 0.7694       |



| Dataset    | PSNR ↑ | LPIPS ↓ | CLIP-IQA ↑ | DOVER ↑ |
|------------|--------|---------|------------|---------|
| YouHQ      | 26.88  | 0.3383  | 0.2496     | 0.3965  |
| OpenVid-1M | 27.04  | 0.3376  | 0.2683     | 0.4363  |
| HQ-VSR     | 27.20  | 0.3037  | 0.3236     | 0.6154  |

## **Training Dataset**

- HQ-VSR achieves the best performance
- Quality matters more than quantity.

## **Processing Pipeline**

- Motion-based cropping for dynamic regions.
- Each step progressively improves performance.

| Pipeline   | PSNR ↑       | LPIPS ↓       | CLIP-IQA ↑    | DOVER ↑       |
|------------|--------------|---------------|---------------|---------------|
| OpenVid-1M | 27.04        | 0.3376        | 0.2683        | 0.4363        |
| +Filter    | 27.09        | 0.3236        | 0.2894        | 0.5357        |
| +Motion    | <b>27.20</b> | <b>0.3037</b> | <b>0.3236</b> | <b>0.6154</b> |




| Dataset | Metric                       | RealESRGAN [38] | ResShift [56] | RealBasicVSR [5] | Upscale-A-Video [63] | MGLD-VSR [50] | VEnhancer [9] | STAR [48] | DOVE (ours) |
|---------|------------------------------|-----------------|---------------|------------------|----------------------|---------------|---------------|-----------|-------------|
|         | PSNR ↑                       | 24.04           | 23.65         | 24.13            | 21.72                | 24.23         | 21.32         | 23.47     | 26.48       |
|         | SSIM ↑                       | 0.7107          | 0.6016        | 0.6801           | 0.5913               | 0.6957        | 0.6811        | 0.6804    | 0.7827      |
|         | LPIPS ↓                      | 0.3877          | 0.5537        | 0.3908           | 0.4116               | 0.3272        | 0.4344        | 0.4242    | 0.2696      |
| UDM10   | DISTS ↓                      | 0.2184          | 0.2898        | 0.2067           | 0.2230               | 0.1677        | 0.2310        | 0.2156    | 0.1492      |
| ODMIO   | CLIP-IQA ↑                   | 0.4189          | 0.4344        | 0.3494           | 0.4697               | 0.4557        | 0.2852        | 0.2417    | 0.5107      |
|         | FasterVQA ↑                  | 0.7386          | 0.4772        | 0.7744           | 0.6969               | 0.7489        | 0.5493        | 0.7042    | 0.8064      |
|         | DOVER ↑                      | 0.7060          | 0.3290        | 0.7564           | 0.7291               | 0.7264        | 0.4576        | 0.4830    | 0.7809      |
|         | $\mid E_{warp}^* \downarrow$ | 4.83            | 6.12          | 3.10             | 3.97                 | 3.59          | 1.03          | 2.08      | 1.77        |
|         | PSNR ↑                       | 22.47           | 21.58         | 21.80            | 20.42                | 22.77         | 20.50         | 22.42     | 22.42       |
|         | SSIM ↑                       | 0.7412          | 0.6473        | 0.7045           | 0.6117               | 0.7418        | 0.7117        | 0.7421    | 0.7523      |
|         | LPIPS ↓                      | 0.4534          | 0.5945        | 0.4235           | 0.4717               | 0.3568        | 0.4471        | 0.4311    | 0.3476      |
| MVSR4x  | DISTS ↓                      | 0.3021          | 0.3351        | 0.2498           | 0.2673               | 0.2245        | 0.2800        | 0.2714    | 0.2363      |
|         | CLIP-IQA ↑                   | 0.4396          | 0.5003        | 0.4118           | 0.6106               | 0.3769        | 0.3104        | 0.2674    | 0.5453      |
|         | FasterVQA ↑                  | 0.3371          | 0.4723        | 0.7497           | 0.7663               | 0.6764        | 0.3584        | 0.2840    | 0.7742      |
|         | DOVER ↑                      | 0.2111          | 0.3255        | 0.6846           | 0.7221               | 0.6214        | 0.3164        | 0.2137    | 0.6984      |
|         | $E_{warp}^* \downarrow$      | 1.64            | 3.89          | 1.69             | 5.10                 | 1.55          | 0.62          | 0.61      | 0.78        |
|         | │ CLIP-IQA ↑                 | 0.3617          | 0.4049        | 0.3433           | 0.4132               | 0.3465        | 0.3031        | 0.2652    | 0.3484      |
| VideoLO | FasterVQA ↑                  | 0.7381          | 0.5909        | 0.7586           | 0.7501               | 0.7412        | 0.6769        | 0.7028    | 0.7764      |
| VideoLQ | DOVER ↑                      | 0.7310          | 0.6160        | 0.7388           | 0.7370               | 0.7421        | 0.6912        | 0.7080    | 0.7435      |
|         | $E_{warp}^* \downarrow$      | 7.58            | 7.79          | 5.97             | 13.47                | 6.79          | 6.495         | 5.96      | 5.85        |

| Method           | Upscale-A-Video [22] | MGLD-VSR [16] | VEnhancer [2] | STAR [14] | DOVE-2B (ours) | DOVE (ours) |
|------------------|----------------------|---------------|---------------|-----------|----------------|-------------|
| Inference Step   | 30                   | 50            | 15            | 15        | 1              | 1           |
| Parameters (M)   | 1,086.75             | 1,564.66      | 2,496.59      | 2,492.90  | 1,910.28       | 5,787.19    |
| MACs (T)         | 9,084.73             | 8,528.7       | 3,056.16      | 4,281.67  | 461.38         | 504.81      |
| Running Time (s) | 279.32               | 425.23        | 121.27        | 173.07    | 14.88          | 14.90       |

## Quantitative

- State-of-the-art performance:
  DOVE surpasses existing VSR methods on most benchmarks.
- Significant
  acceleration:
  DOVE achieves up
  to 28× faster
  inference than
  multi-step methods.





## Qualitative

- Visual quality:

   DOVE produces
   realistic details.
- Consistency:
   Achieves superior
   temporal and
   spatial coherence.



## **Conclusion**



#### **Contribution**

- Propose **DOVE**, the first **one-step** diffusion model for real-world VSR.
- Design a latent-pixel training strategy enabling efficient fine-tuning.
- Build **HQ-VSR**, a high-quality dataset tailored for video restoration.
- Achieve state-of-the-art fidelity with up to 28× faster inference speed.

#### Poster

- Exhibit Hall C,D,E
- Wed 3 Dec 4:30 p.m. PST 7:30 p.m. PST



## Thanks!