

Turning Your Offline Video Large Language Model into a Proactive Streaming Assistant

Streaming Video Understanding

Multi-turn Real-time

Incoming frames

00:24

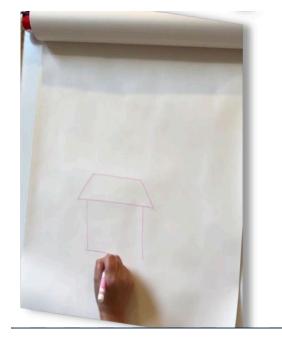
USER: What words are <u>currently</u> shown.

ASSISTANT: UNIVERSIAL STUDIO HOLLYWOOD

01:26

USER: What words are <u>currently</u> shown.

ASSISTANT: STUDIO STORE

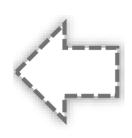

05:45

USER: What's the white rabbit doing?

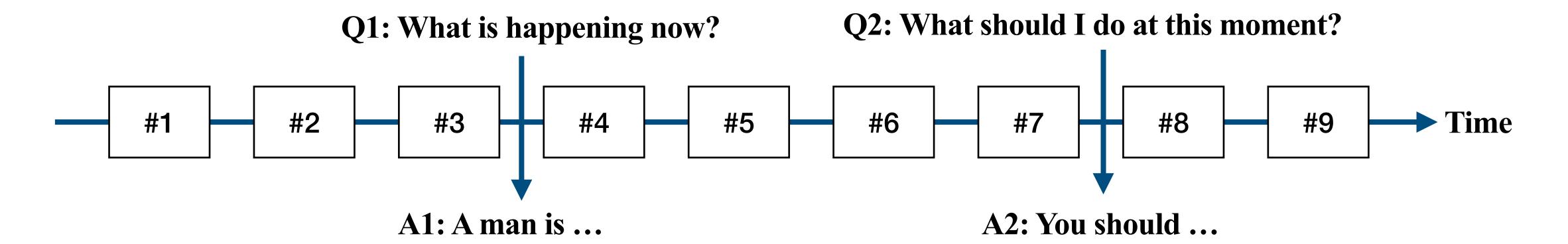
ASSISTANT: The White rabbit is nodding its head and swaying on the ...

Proactive Responses

USER: How do I draw this picture?



Incoming frames

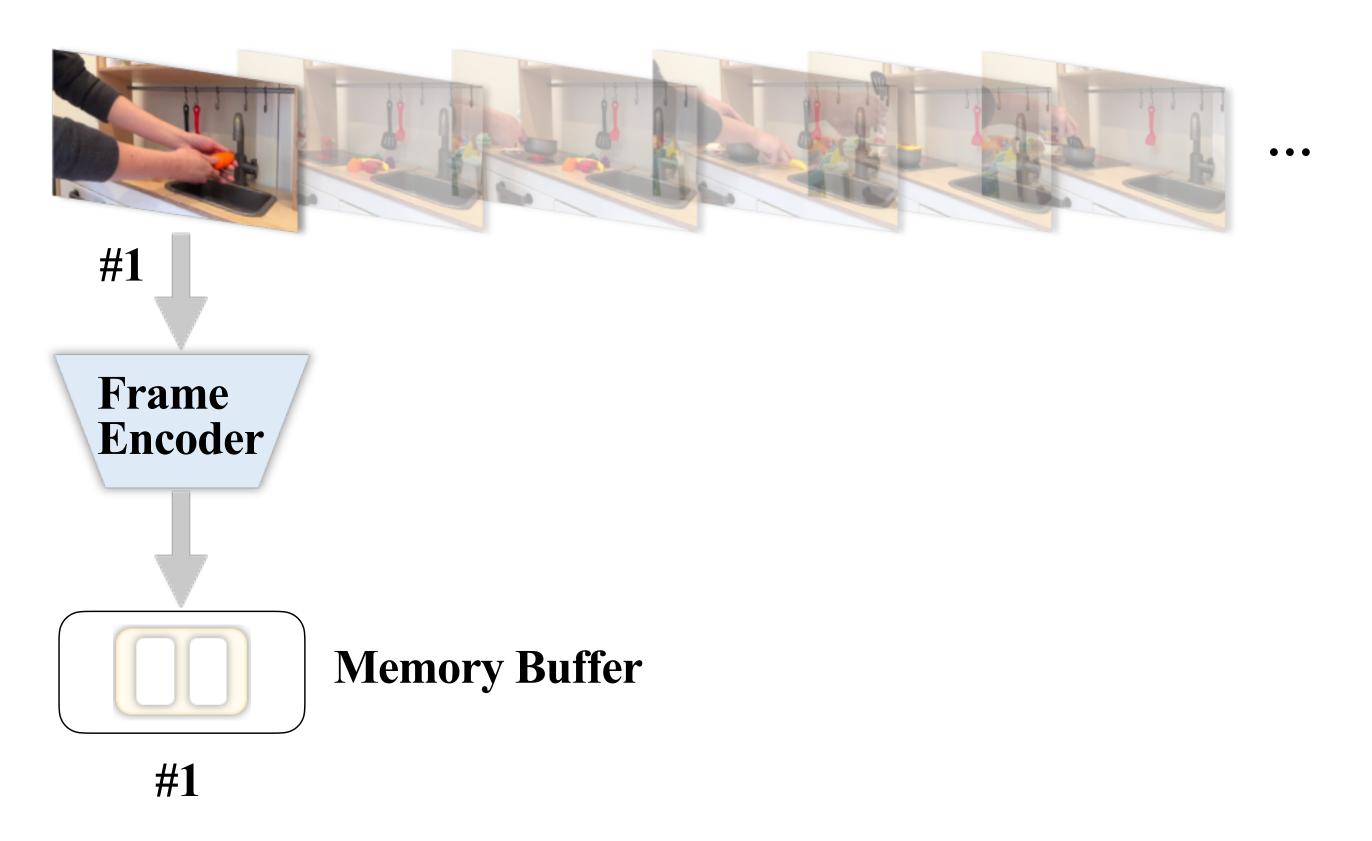

ASSISTANT: Draw a house and a tree.

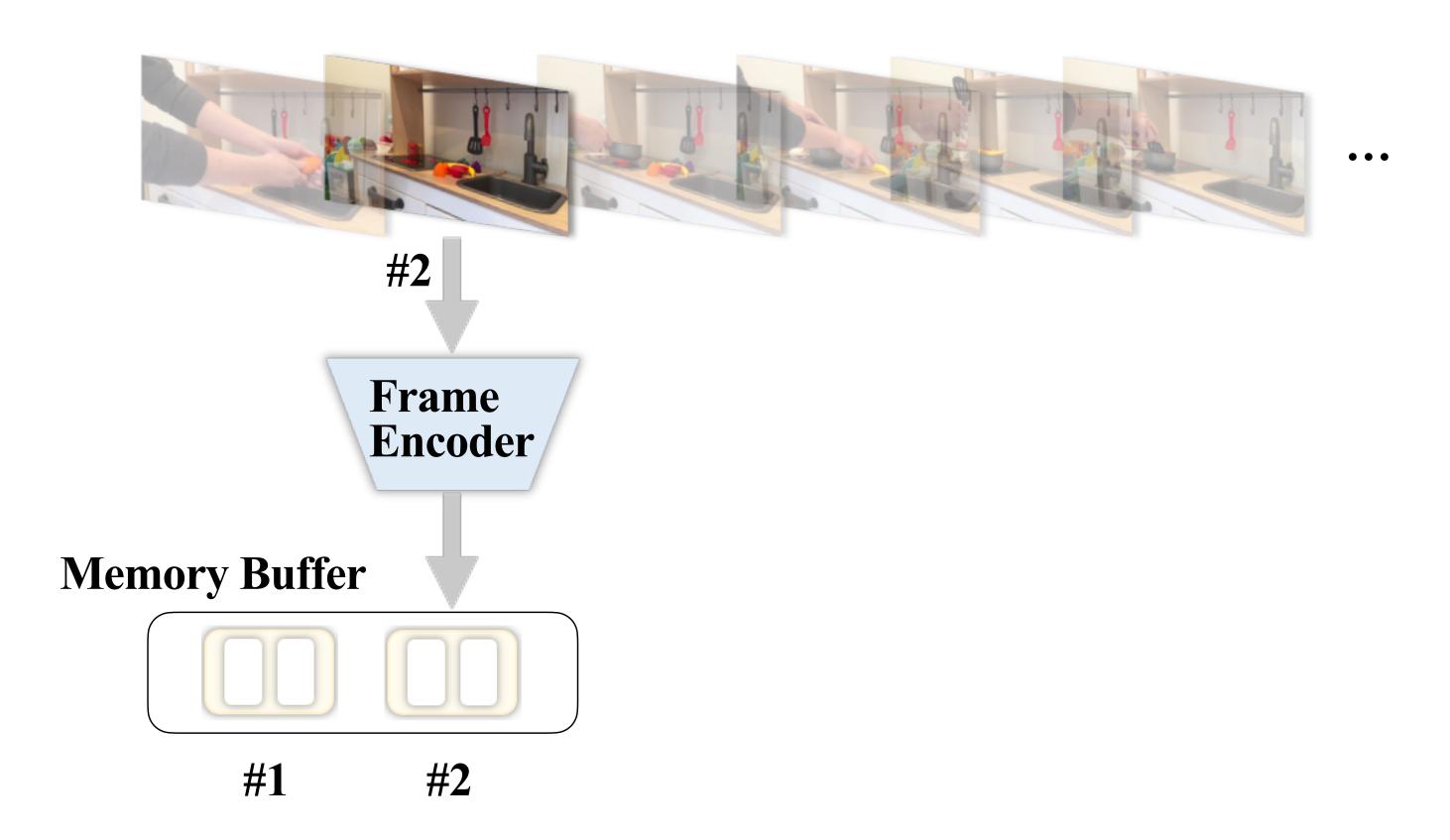
ASSISTANT: Draw a sun and two clouds.


ASSISTANT: Color the sun blue and the clouds green.

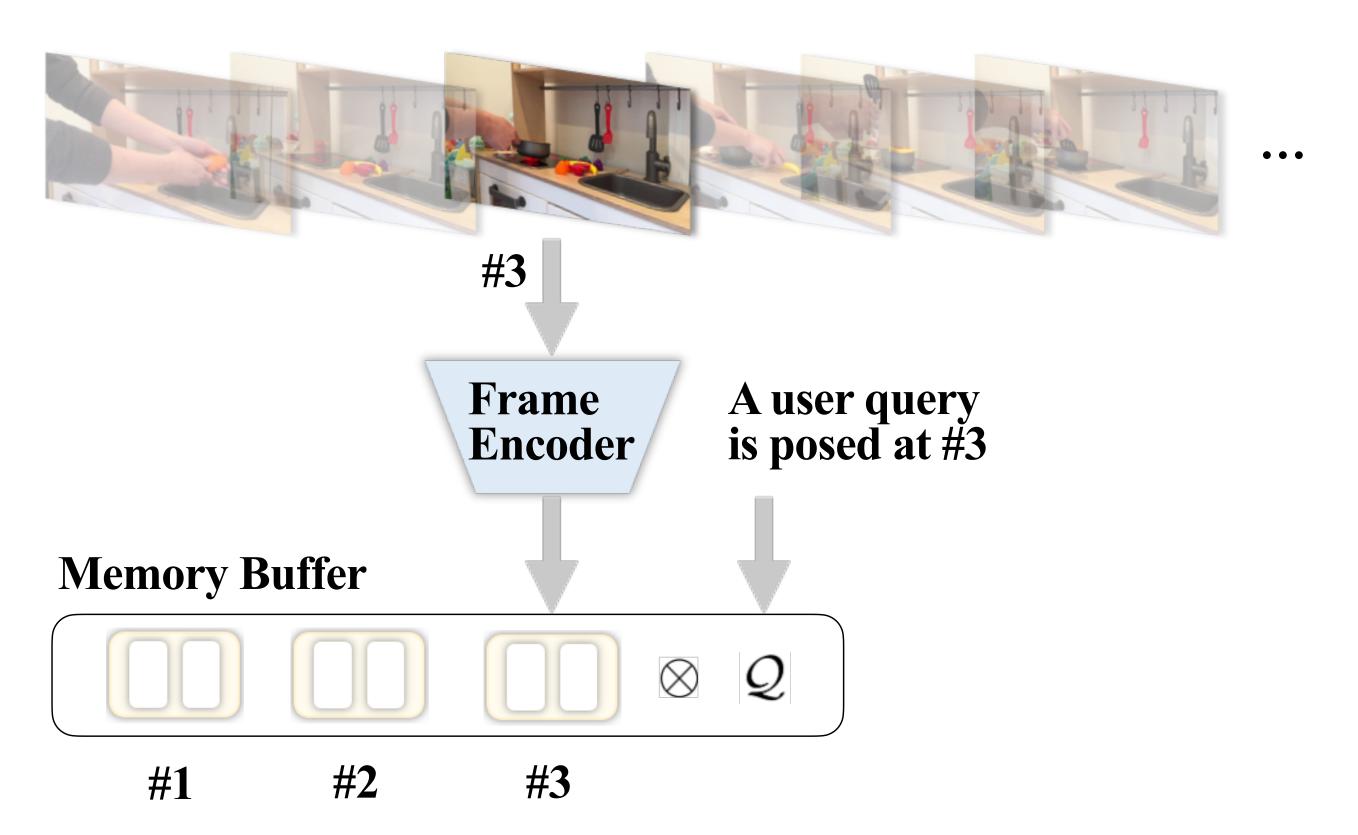
Preliminary Analysis from the Perspective of Input Sequences

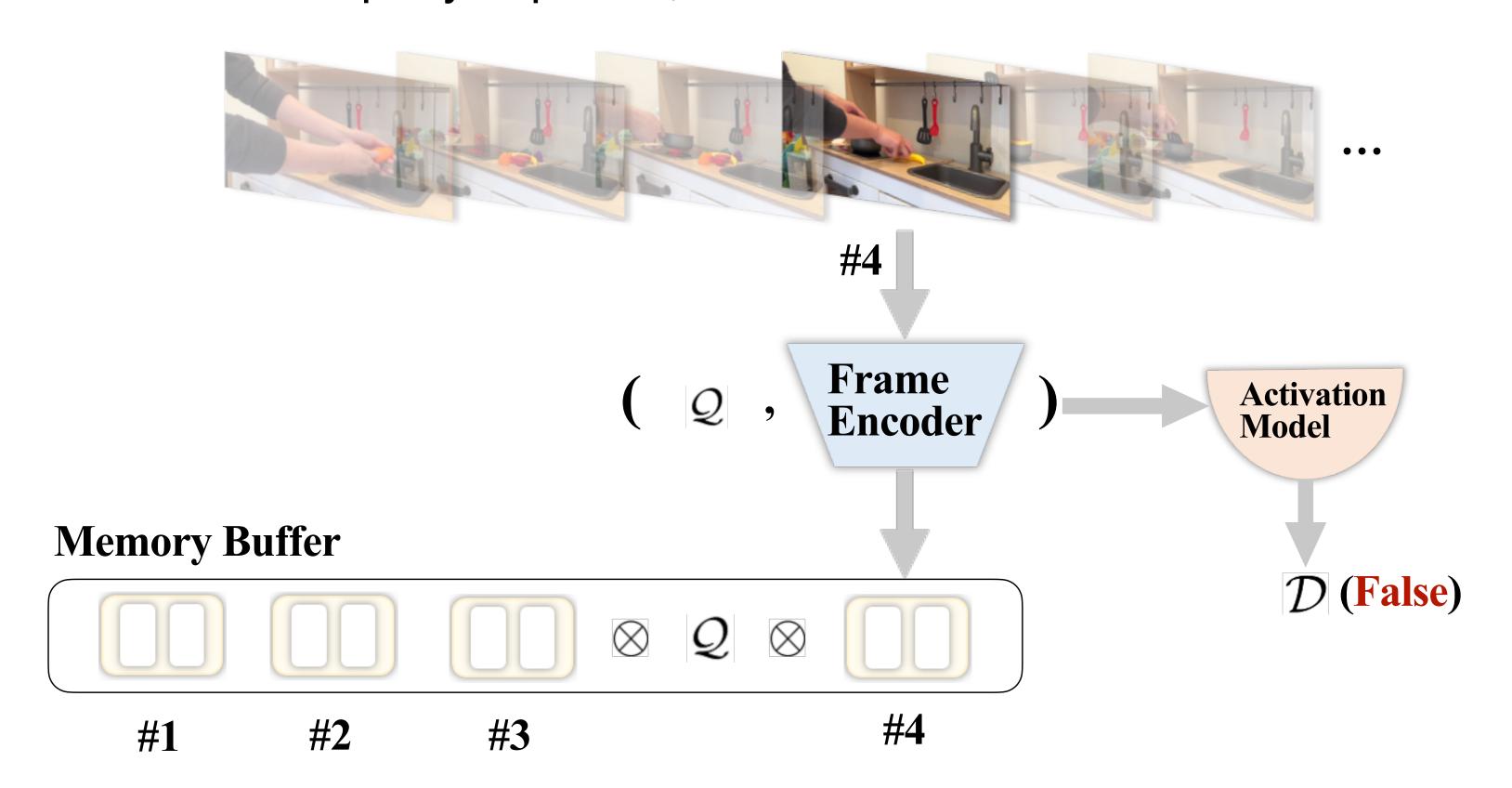
- · Multi-turn dialogue with interleaved video-text: can be adapted from offline models w/o training.
 - Format: <V1><Q1><A1>, <V2><Q2><A2>, ...


- · Proactive Responses: a time interval between user query and assistant response.
 - Format: <Q>, <V1> <A1>, <V2> <A2>, ...
- Q: Remind me when you see the apple.

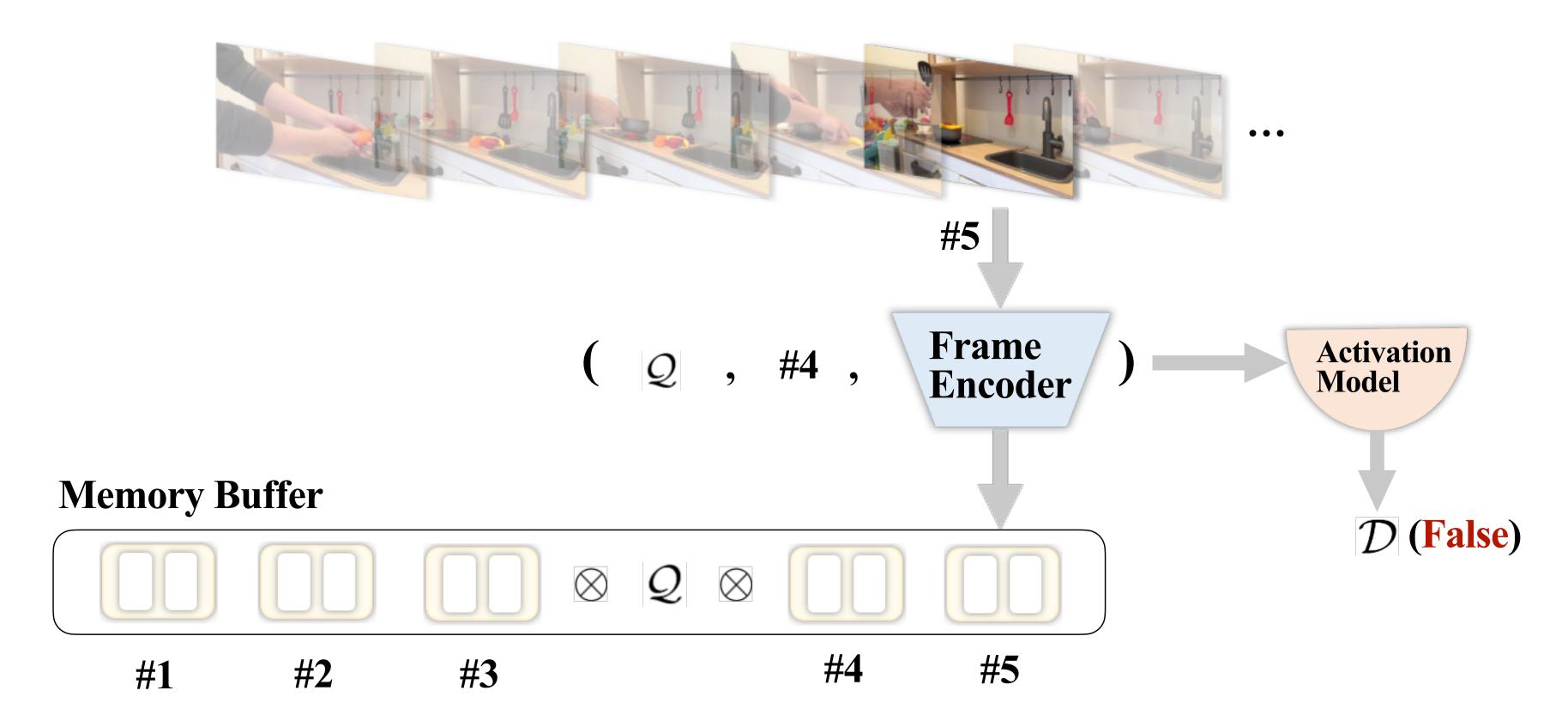

How to equip current offline Video-LLMs with streaming interactive capabilities?

- · A buffer to manage incoming frames and historical dialogues in streaming videos
- · A compression strategy for infinite streaming contexts and real-time understanding
- An activation mechanism for proactive responses
- A dataset tailored for SFT with diverse streaming scenarios

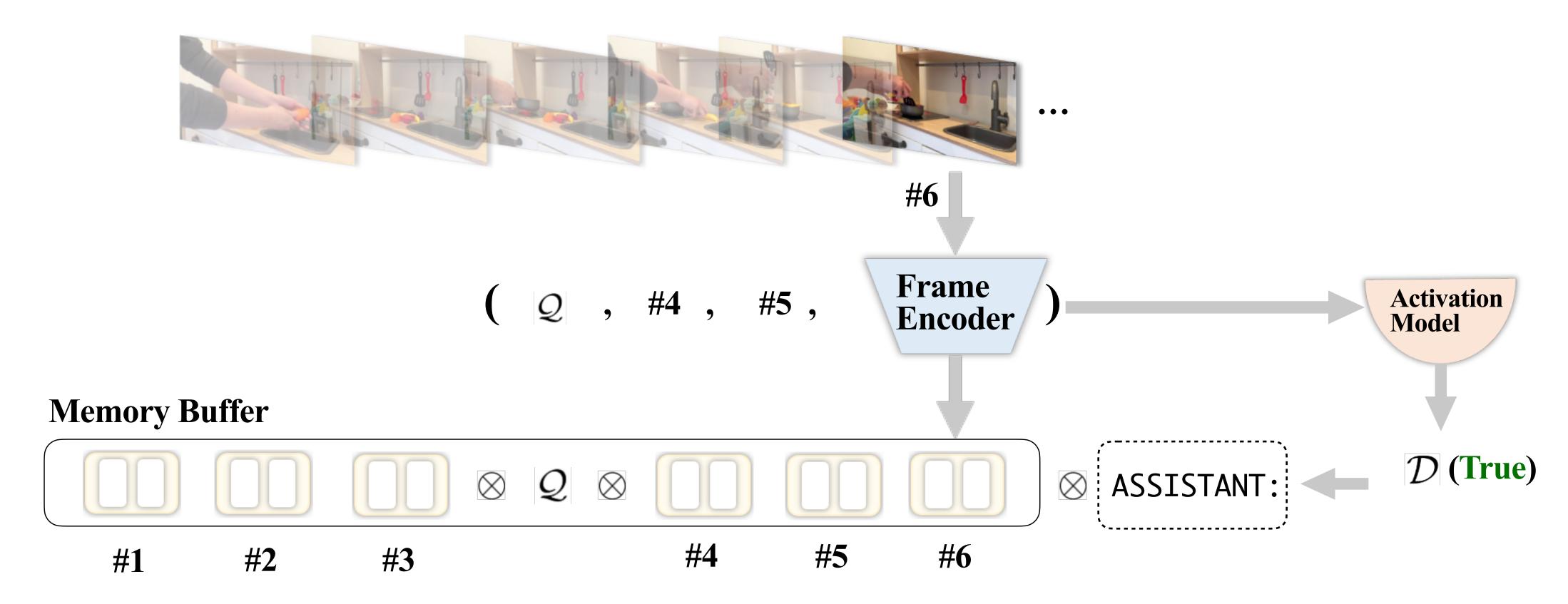

· In streaming scenarios, incoming frames are encoded one by one, and stored into the memory buffer


· In streaming scenarios, incoming frames are encoded one by one, and stored into the memory buffer

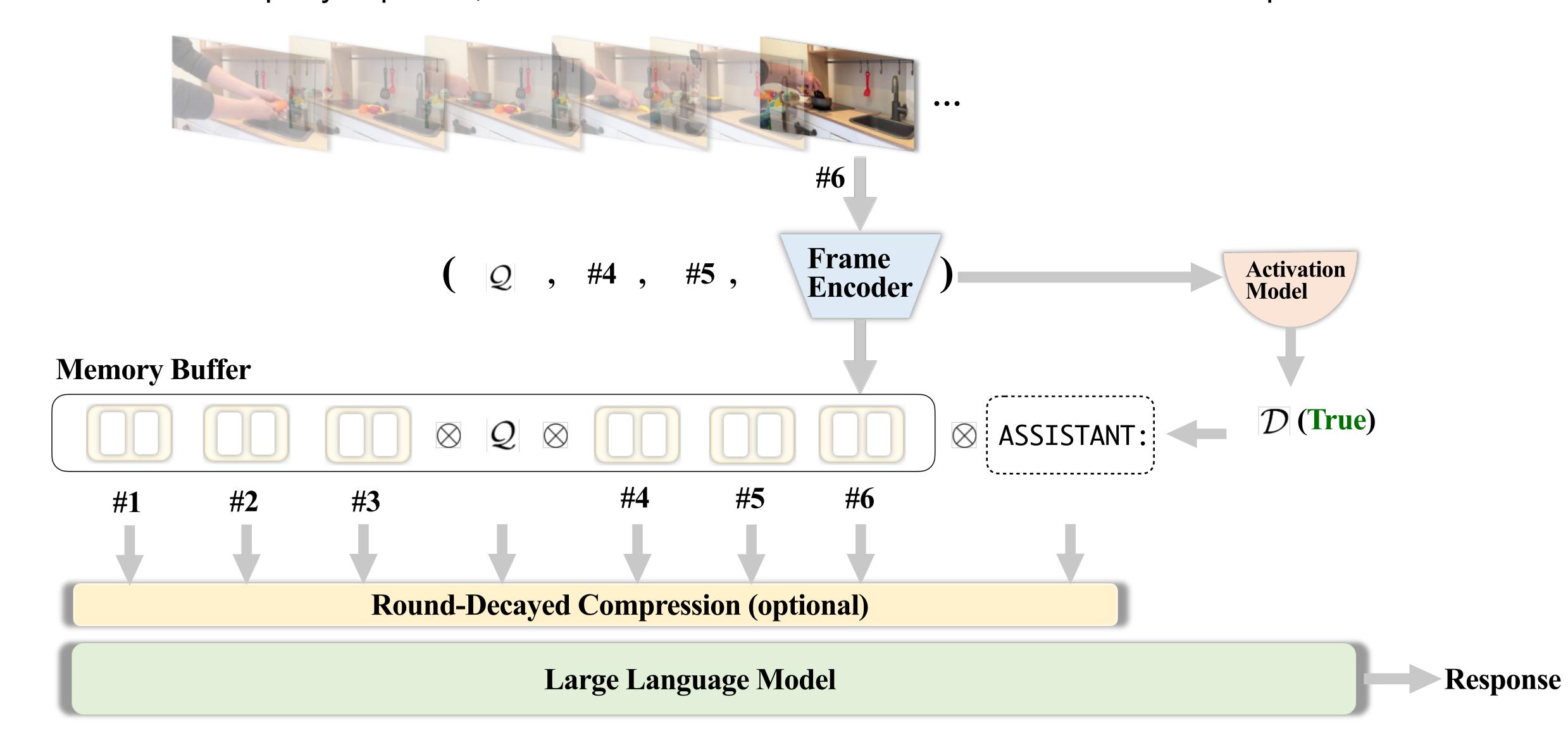
· In streaming scenarios, incoming frames are encoded one by one, and stored into the memory buffer



· When the user query is posed, an activation model makes decision on whether response or not


 \mathcal{D} is False at #4 and keeps buffering

· When the user query is posed, an activation model makes decision on whether response or not


D is False at #5 and keeps buffering

· When the user query is posed, an activation model makes decision on whether response or not

D is True at #6 and requires a response

· When the user query is posed, an activation model makes decision on whether response or not

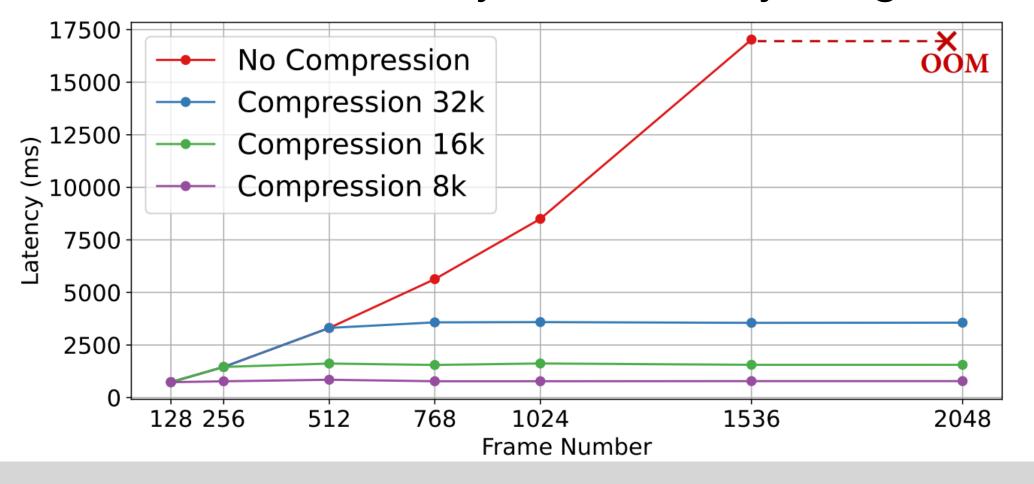
• The memory buffer is also updated when generating new responses to preserve complete historical dialogues (line 17).

Algorithm 1: StreamBridge Framework

```
Inputs: incoming frames [F_1, F_2, \ldots, F_t, \ldots];
 2 Initializations: \mathcal{I}(\cdot), \mathcal{LLM}(\cdot), \mathcal{ACT}(\cdot), \mathcal{COM}(\cdot), \mathcal{MB} = [\cdot], MaxLen, t_{\mathcal{Q}}=None;
 3 while F_t do
           \mathcal{MB} \leftarrow \mathcal{I}(F_t);
                                                                            // store the frame feature \mathcal{I}(F_t) into the Memory Buffer
          if Q at timestamp t then
                 \mathcal{MB} \leftarrow \mathcal{Q}
                                                                                                    // t_Q is the timestamp when Q is posed
                t_{\mathcal{Q}} \leftarrow t;
          if t_{\mathcal{Q}} is not None then
 8
            \mid \mathcal{D} \leftarrow \mathcal{ACT}(\mathcal{Q}, F_{t_{\mathcal{O}}:t-1}, F_t);
                                                                                  // \mathcal{D} denotes whether response or not at timestamp t
10
           else
                                                                                                                // not response if there is no Q
                \mathcal{D} \leftarrow \text{False};
11
           if \mathcal{D} then
12
                 // \mathcal{D} is true at timestamp t, and should return a response \mathcal{R}
                 InputEmbeds \leftarrow Flatten(\mathcal{MB})
13
                 if Len(InputEmbeds) > MaxLen then
14
                       InputEmbeds \leftarrow \mathcal{COM}(InputEmbeds);
                                                                                                        // compress redundant visual tokens
15
                 \mathcal{R} \leftarrow \mathcal{LLM}(\text{InputEmbeds});
                                                                                                                             // return a response \mathcal{R}
16
17
                 \mathcal{MB} \leftarrow \mathcal{R};
                                                                                                                                        // update \mathcal{MB}
                                                                                                                   // receive subsequent frames
           t += 1;
```

StreamBridge-Round Decayed Compression

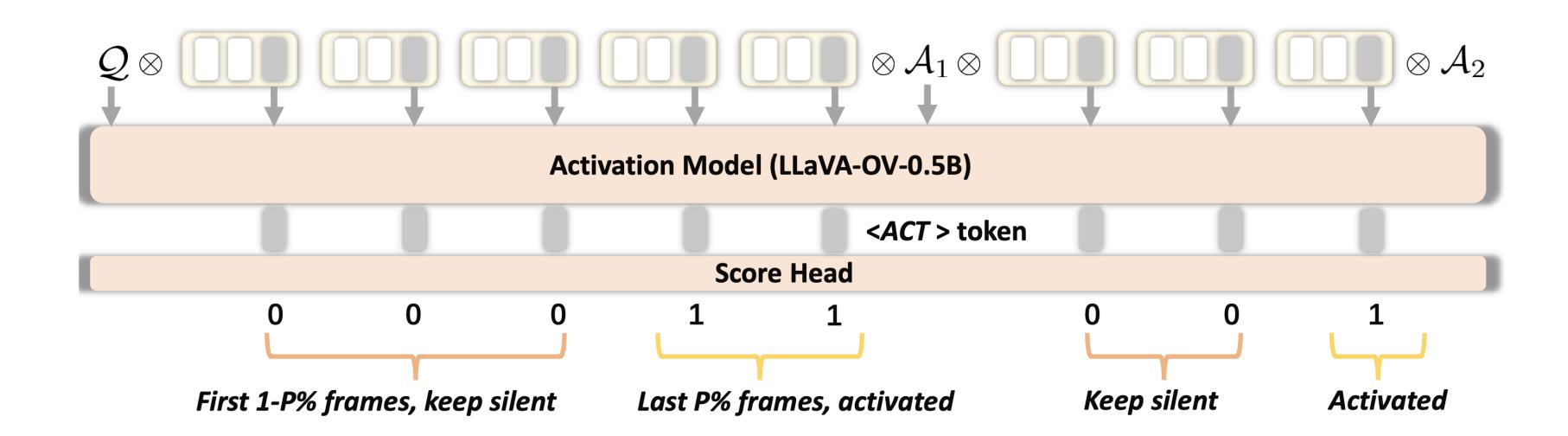
· Streaming scenarios usually feature real-time understanding on the most recent video segment


USER: What is written on the sign?

ASSISTANT: "Change the direction of all escalators and travelators".

Compress frame tokens in previous rounds

Preserve most recent frame tokens


- Rounded Decayed Compression
 - Apply token merging (average pooling over adjacent frame tokens) in a round-by-round manner, starting from the earliest rounds, until the total embedding length below the predefined *MaxLen*
 - Maintain near-constant latency and memory usage when the number of tokens exceeds MaxLen

Inference Latency (y-axis) vs. Frame Number (x-axis) on a single A100-80G with different *MaxLen*.

StreamBridge-Activation Model

· A parallel pipeline by decoupling the activation mechanism into a compact activation model, to prevent the potential interference with the language modeling capacity of the main Video-LLM

- · A Plug-and-play Activation Model
 - · Replace the LM head with a score head for binary classification.
 - A learnable activation token <ACT>.
 - Collect a diverse set of temporally annotated video datasets to train the model.
 - · Only the last P% of frames of each video segment <Vi> are labeled as positive (i.e., response-worthy), while earlier frames are treated as negatives.

StreamIT Dataset

- Datasets for proactive understanding:
 - Format: <Q>, <V1> <A1>, <V2> <A2>, ...
 - · Tasks: dense video caption, sequential step recognition, grounded VideoQA
- · StreamingQA-120K: Multi-turn, long-form QA construction:
 - Format: <V1> <Q1> <A1>, <V2> <Q2> <A2>, ...
 - · Clip concatenation: iteratively compute pairwise similarity between videos and concatenate highly similar clips from 1.28m video pools.
 - · QA construction: Prompt GPT-4o to generate QA pairs spanning 8 task types
 - Data augmentation:
 - · Random QA drop: randomly drops some QA pairs in a concatenated video.
 - QA interval shit: randomly transforms sequences from <Vi> <Qi> <Ai> to <Qi> <Vi> <Ai>

Task # of Samples		Datasets	Average duration	
		ActivityNet [57] (~10k)	~180s	
Dense Video Captioning	~54k	Shot2Story [58] (∼36k)	\sim 16s	
		ViTT [69] (~8k)	\sim 210s	
	[YouCook2 [60] (~1.3k)	~317s	
Sequential Step Recognition	~22k	COIN [59] (\sim 11k)	\sim 145s	
		HowToStep [70] (~10k)	\sim 190s	
	[MovieChat [72] (~0.8k)	~10k frames	
Constitution American	601-	EgoTimeQA [71] (~10k)	\sim 150s	
Grounded Video Question Answering	∼69k	QAEgo4D [61] (~15k)	\sim 495s	
		FineVideo [73] (~43k)	\sim 280s	
Multi-turn Real-time Question Answering	~120k	StreamingQA-120K (~120k) (Sourced from Webvid-10M[19], Panda-70M[18], InternVid-10M[17])	∼150s	

Multi-turn Real-time Understanding Results

Method	# of	OVO-Bench Real-Time					Streaming-Bench Real-Time												
Method	Frames	OCR	ACR	ATR	STU	FPD	OJR	AVG.	OP	CR	CS	ATP	EU	TR	PR	SU	ACP	CT	AVG.
Human																			
Human	_	93.96	92.57	94.83	92.70	91.09	94.02	93.20	89.47	92.00	93.60	91.47	95.65	92.52	88.00	88.75	89.74	91.30	91.46
Human - 93.96 92.57 94.83 92.70 91.09 94.02 93.20 89.47 92.00 93.60 91.47 95.65 92.52 88.00 88.75 89.74 91.30 91.46 Proprietary Models (Offline), Single-Turn Evaluation																			
Gemini 1.5 pro [23]	1 FPS	85.91	66.97	79.31	58.43	63.37	61.96	69.32	79.02	80.47	83.54	79.67	80.00	84.74	77.78	64.23	71.95	48.70	75.69
GPT-40 [22]	64	69.80	64.22	71.55	51.12	70.3	59.78	64.46	77.11	80.47	83.91	76.47	70.19	83.80	66.67	62.19	69.12	49.22	73.28
Open-Source Models (Offline), Single-Turn Evaluation																			
Qwen2-VL-72B [2]	64	65.77	60.55	69.83	51.69	69.31	54.35	61.92	-	-	-	-	-	-	-	-	-	-	-
LLaVA-Video-7B [15]	64	69.13	58.72	68.83	49.44	74.26	59.78	63.52	-	-	-	-	-	-	-	-	-	-	-
LLaVA-OV-7B [3]	64/32	66.44	57.80	73.28	53.37	71.29	61.96	64.02	80.38	74.22	76.03	80.72	72.67	71.65	67.59	65.45	65.72	45.08	71.12
Qwen2-VL-7B [2]	64/1 FPS	60.40	50.46	56.03	47.19	66.34	55.43	55.98	75.20	82.81	73.19	77.45	68.32	71.03	72.22	61.19	61.47	46.11	69.04
InternVL-V2-8B [74]	64/16	67.11	60.55	63.79	46.07	68.32	56.52	60.39	68.12	60.94	69.40	77.12	67.70	62.93	59.26	53.25	54.96	56.48	63.72
			Oı	pen-So	urce M	Iodels	(Stream	ming),	Single	-Turn	Evalua	tion							
Flash-VStream-7B [11]	1 FPS	24.16	29.36	28.45	33.71	25.74	28.80	28.37	25.89	43.57	24.91	23.87	27.33	13.08	18.52	25.20	23.87	48.70	23.23
VideoLLM-Online-8B [10]	2 FPS	8.05	23.85	12.07	14.04	45.54	21.20	20.79	39.07	40.06	34.49	31.05	45.96	32.40	31.48	34.16	42.49	27.89	35.99
Dispider [13]	1 FPS	57.72	49.54	62.07	44.94	61.39	51.63	54.55	74.92	75.53	74.10	73.08	74.44	59.92	76.14	62.91	62.16	45.80	67.63
Models under $StreamBridge$ (Offline $ o$ Streaming), Multi-Turn Evaluation																			
Oryx-1.5-7B [†] [1]	1 FPS	60.40	52.29	69.83	50.00	65.35	57.61	59.25	78.47	77.17	83.86	80.20	71.07	66.98	79.63	61.38	66.29	40.93	70.59
+ Stream-IT	1 FPS	84.56	75.23	70.69	50.56	74.26	71.74	71.17	82.29	77.95	87.98	86.47	77.99	81.31	76.85	69.92	71.96	35.23	74.79
LLaVA-OV-7B [†] [3]	1 FPS	58.39	59.63	69.82	44.38	76.23	61.41	61.64	76.84	77.17	82.60	75.25	64.15	64.17	75.00	61.38	61.19	46.11	68.39
+ Stream-IT	1 FPS	74.50	77.06	70.69	54.49	73.27	69.57	69.93	82.29	72.44	92.09	80.86	71.07	74.46	75.00	62.20	70.26	28.50	70.92
Qwen2-VL-7B [†] [2]	1 FPS																		72.01
+ Stream-IT	1 FPS	84.56	71.56	74.14	49.44	75.25	72.83	71.30	84.74	82.68	88.92	89.77	77.36	85.36	84.26	69.92	71.67	35.75	77.04

Table 1: Results on real-time understanding tasks on OVO-Bench and Streaming-Bench. † means models under *StreamBridge* framework, and + *Stream-IT* means finetuned on *Stream-IT*.

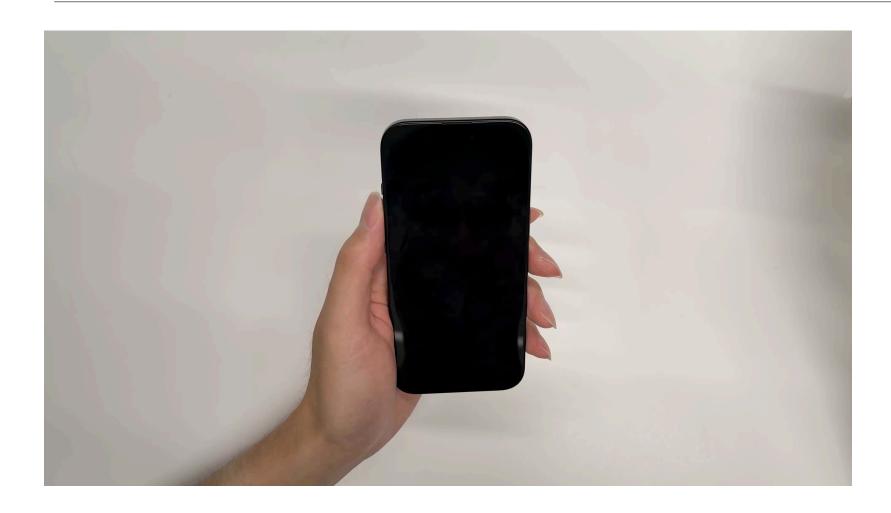
- Models pre-trained on rich multi-modal interleaved data benefit from our framework w/o training. For example, Qwen2-VL (55.98 -> 61.64, 69.04 -> 72.01).
- Models fine-tuned on StreamIT demonstrates notable improvements, even surpassing Gemini-1.5 Pro and GPT-4o.

General Video Understanding Results

	MVBench	PerceptionTest	TempCompass	EgoSchema	LongVideoBench	MLVU	VideoMME (w/o subs)		
Model	Avg	Val	MC	Test	Val	M-Avg	Avg		
Avg. Duration	16s	23s	12s	180s	473s	651s	1010s		
Proprietary Models									
Gemini 1.5 pro [23]	60.5	-	67.1	71.2	64.0	-	75.0		
GPT-4o [22]	64.6	-	70.9	72.2	66.7	64.6	71.9		
Open-Source Models									
Kangaroo-8B [76]	61.0	_	62.5	_	54.8	61.0	56.0		
LongVILA-7B [77]	_	_	_	67.7	_	_	57.5		
LongVU-7B [78]	66.9	_	_	67.6	-	65.4	60.6		
Apollo-7B [4]	_	67.3	64.9	_	58.5	70.9	61.3		
NVILA-8B [79]	68.1	65.4	69.7	_	57.7	70.1	64.2		
SF-LLaVA-1.5-7B [5]	_	69.6	68.8	_	62.5	71.5	63.9		
InternVL2.5-8B [80]	72.0	68.2	68.3	51.5	60.0	68.9	64.2		
VideoChat-Flash-7B [81]	74.0	76.2	_	_	64.7	74.7	65.3		
VideoLLaMA3-7B [37]	69.7	72.8	68.1	63.3	59.8	73.0	66.2		
Oryx-1.5-7B [1]	67.6	70.0	58.8	-	56.3	67.5	58.8		
Oryx-1.5-7B (ours) [‡]	68.0 (†0.4)	71.0 (†1.0)	69.0 (†10.2)	61.2	58.9 (†2.6)	71.4 (†4.0)	65.5 (†6.7)		
LLaVA-OV-7B [3]	56.7	57.1	64.8	60.1	56.3	64.7	58.2		
LLaVA-OV-7B (ours) [‡]	59.4 (†2.7)	63.9 (†6.8)	67.7 (†2.9)	67.0 (†6.9)	54.3 (\ 2.0)	68.2 (†3.5)	61.2 (†3.0)		
Qwen2-VL-7B [2]	67.0	62.3	67.9	66.7	_	_	63.3		
Qwen2-VL-7B (ours) [‡]	64.4 (\ 2.6)	69.9 (†7.6)	71.1 (†3.2)	66.9 (†0.2)	59.1	69.6	64.4 (†1.1)		

Table 2: Results on general video understanding benchmarks. [‡] means models under *Stream-Bridge* framework and fine-tuned on *Stream-IT*.

• Models under our framework and fine-tuned on StreamIT maintain competitive or achieve better performance on standard general video understanding tasks. For example, Oryx-1.5-7B achieves 65.5 (+6.7) on VideoMME.


Proactive Results

Method	# of						
	Frames	$ \overline{ TVG_{F1} } $	TAL_{F1}	DVC_{F1}	DVC_{Sim}	SLC_{F1}	SLC_{Sim}
VideoLLM-Online [10] Dispider [13]	2 FPS 1 FPS	13.2 36.1	9.1 27.3	24.0 33.8	13.4 18.9	9.9 18.8	10.1 12.4
	Mode	ls under <i>St</i>	treamBridg	ge Framew	ork		
Oryx-1.5 (ours) [‡]	1 FPS	34.3	24.3	37.8	24.0	22.5	17.3
LLaVA-OV (ours) [‡]	1 FPS	34.3	24.3	37.9	24.2	22.8	16.2
Qwen2-VL (ours) [‡]	1 FPS	34.3	24.3	38.3	25.1	22.6	17.1

Table 3: Results on ET-Bench. ‡ denotes models under StreamBridge framework and fine-tuned on Stream-IT. TVG_{F1} and TAL_{F1} scores are identical across Stream-Bridge models due to sharing the same activation model.

- In all tasks, the question is presented at the beginning of the video, and the model must autonomously decide when to respond.
- StreamBridge outperforms across generation-based tasks such as DVC (Dense Video Captioning) and SLC (Step Localization and Captioning), achieving higher similarity scores by producing more accurate and context aware descriptions in streaming scenarios.
- We attribute this to the decoupled nature of the activation model, which enables the main Video-LLM to focus solely on video understanding and language generation, free from the burden of proactive decision-making.

Qualitative Results

Prompt: What am I doing with the phone?

StreamBridge:

00:06: Wipe the screen.

00:13: Wipe the back of the phone.

00:19: Wipe the camera lens.

Prompt: Guide me through the cooking steps.

StreamBridge:

00:20: Draii	n the pasta.
--------------	--------------

00:34: Cut the garlic and lemon.

00:58: Cut the parsley.

01:18: Squeeze the lemon juice into a measuring cup.

01:42: Season the chicken with salt and pepper.

02:07: Add oil to the pan.

02:18: Add the chicken to the pan.

02:32: Flip the chicken over.

02:46: Add oil to the pan.

03:03: Add the lemon slices to the pan.

03:26: Remove the lemon slices from the pan.

03:49: Add the olives to the pan.

04:10: Add the chicken broth to the pan.

04:20: Cook the meat.

04:32: Fry the meat.

04:43: Add seasoning.

04:54: Cut the meat.

05:05: Add decoration.

05:16: Add seasoning.

05:26: Taste and enjoy.

05:37: Cut the olives.