

Yan Gong¹, Yiren Song², Yicheng Li¹, Chenglin Li¹, Yin Zhang^{1*}

¹Zhejiang University, ²National University of Singapore

Presenter: Yan Gong

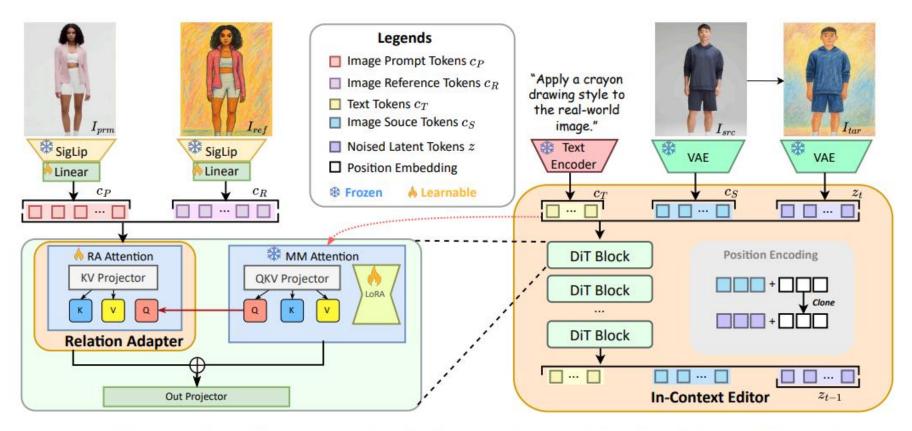
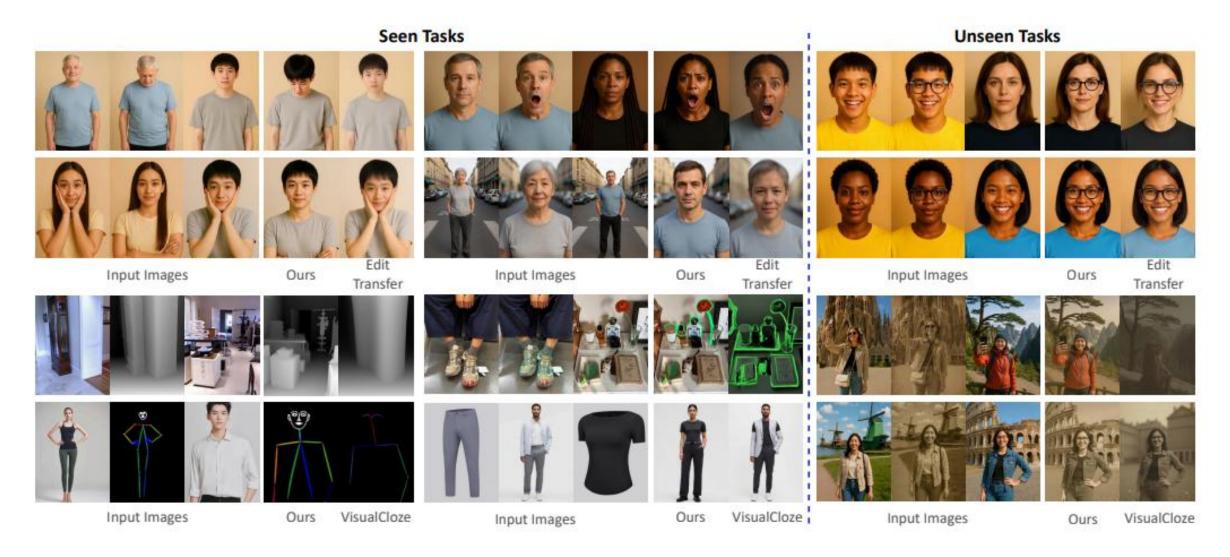


Figure 2: The overall architecture and training paradigm of RelationAdapter. We employ the RelationAdapter to decouple inputs by injecting visual prompt features into the MMAttention module to control the generation process. Meanwhile, a high-rank LoRA is used to train the In-Context Editor on a large-scale dataset. During inference, the In-Context Editor encodes the source image into conditional tokens, concatenates them with noise-added latent tokens, and directs the generation via the MMAttention module.



Compared with in-context based methods, our architecture demonstrates image consistency, and editing effectiveness on both seen and unseen tasks.

Evaluation

- Outperforms baseline methods on common tasks, achieving lower MSE and higher CLIP-I, GPT-C, and GPT-A scores.
- The results are improved on both seen and unseen tasks, demonstrating its effectiveness and generalization ability in different editing scenarios.

Table 1: Quantitative Comparison of Baseline Methods Trained on a Common Task (ET: Edit Transfer, VC: VisualCloze). The best results are denoted as Bold.

Method	MSE ↓	<i>CLIP-I</i> ↑	<i>`GPT-C</i> ↑	<i>GPT-A</i> ↑
EditTransfer	0.043	0.827	4.234	3.508
Ours \cap ET	0.020	0.905	4.437	4.429
VisualCloze	0.049	0.802	3.594	3.411
$\mathbf{Ours} \cap \mathbf{VC}$	0.025	0.894	4.084	3.918

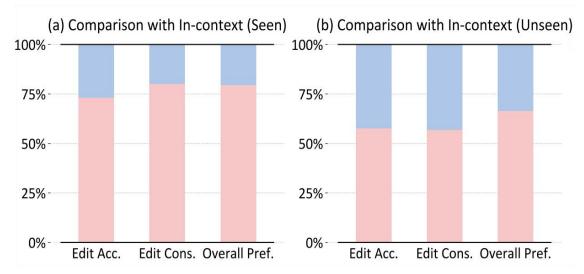
Table 2: Ablation Study on the Effectiveness of the RelationAdapter(RA) in Seen and Unseen Tasks (-S for Seen, -U for Unseen). The best results are denoted as Bold.

Method	MSE ↓	CLIP-I ↑	<i>GPT-C</i> ↑	<i>GPT-A</i> ↑
w/o RA -S	0.055	0.787	3.909	3.597
Ours -S w/o RA -U	0.044 0.061	0.852 0.778	4.079 3.840	4.106 3.566
Ours -U	0.061	0.778	4.187	4.173

❖ Overall performance

- ◆ Efficiency improvement of our method over the In-Context baseline.
- ♦ The inference time is shortened (<9.0 seconds vs. 13.0+ seconds), the inference speed is increased by 30.8%, and the training speed is increased by 6.8%, with significant improvements in both training and inference efficiency.

User Study



Thanks for listening!

Learning and Transferring Visual Relation with Diffusion Transformers

Yan Gong¹, Yiren Song², Yicheng Li¹, Chenglin Li¹, Yin Zhang^{1*}

¹Zhejiang University, ²National University of Singapore

Wechat

Snapchat