

RePIC: Reinforced Post-Training for Personalizing Multi-Modal Language Models

Yeongtak Oh, Dohyun Chung, Juhyeon Shin, Sangha Park, Johan Barthelemy, Jisoo Mok[†], Sungroh Yoon[†]

Data Science & Artificial Intelligence Laboratory
Electrical and Computer Engineering
Seoul National University

- Introduction
- Related Works
- Proposed Method
- Experimental Results
 - 1) Qualitative Results
 - 2) Quantitative Results
 - 3) Further Analysis
- Conclusions

- Introduction
- Related Works
- Proposed Method
- Experimental Results
 - 1) Qualitative Results
 - 2) Quantitative Results
 - 3) Further Analysis
- Conclusions

Introduction

- What is personalization in MLLMs? * concept: a personal visual or textual sample provided as a reference
 - Given user-specific concepts, personalized MLLMs can perform a range of downstream tasks

Then, how can we personalize MLLMs?

- Introduction
- Related Works
- Proposed Method
- Experimental Results
 - 1) Qualitative Results
 - 2) Quantitative Results
 - 3) Further Analysis
- Conclusions

TL;DR

Conventional zero-shot models fails to generate captions including personal information

Name: <thao>
Imfo: A 23-year-old
woman who adores her
beloved dog, Bo.

Q) Give a caption for this image using the given information.

 Qwen-2.5 VL 7B: A young woman stands confidently in front of a Computer Sciences building, ready for her day at school.

Missing Name!

Does not contain any personal information!

- Previous SFT-based personalization methods easily fail in real-world scenarios
- To this end, we propose an RL-based post-training pipeline for MLLM personalization
- Performance

* RePIC: Reinforced Post-training for Personalized Image Captioning

- RePIC shows prominent personalized image captioning performance even for unseen multi-concept settings
- Training Efficiency
 - RePIC requires only 2K training samples compared to other SFT-based baselines that require > 200K samples

Q) Give a personalized caption for the image.

Ours-2K: A lively parade scene unfolds on a bustling street, featuring <monster_toy>, <sloth>, <plush>, and <teddy> in colorful costumes. The <monster_toy> leads the way with a cheerful expression, followed by <sloth>, <plush>, and <teddy>, who carries a drum, creating a festive atmosphere as they march through the crowd.

Faithful Captioning

RAP-LLaVA-210K: Human: <monster_toy> is ready to cross the street! He's got his friends <plush> and <teddy} with him, and they're all set to rock this parade!

Identity Missing

RAP-Qwen-210K: <monster_toy> and friends are ready to march!

Identity Missing

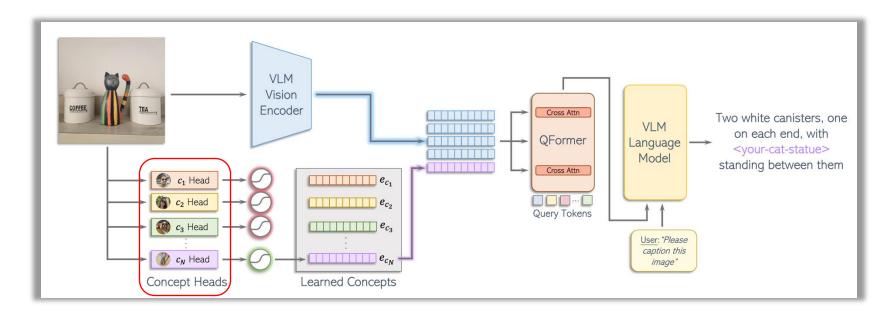
TimeLine

✓ Pros

Uses external concept heads to identify each user-specific concept

Cons

 Requires retraining the concept heads when the new concepts emerge



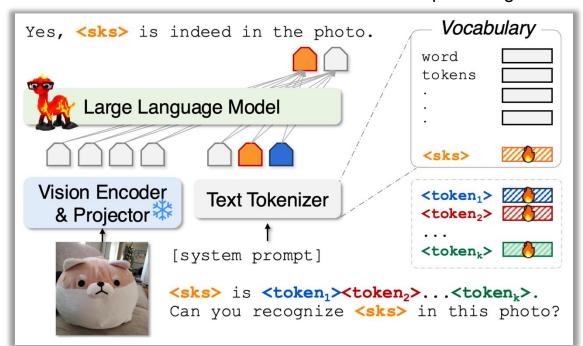
TimeLine

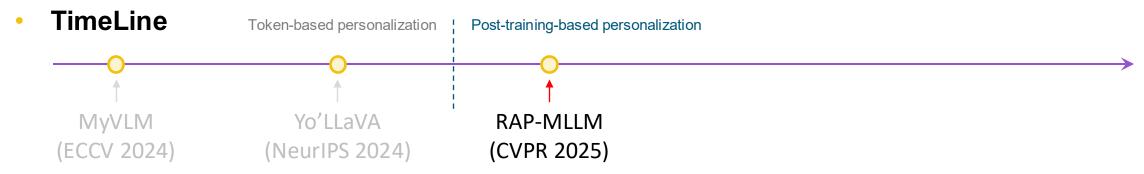
✓ Pros

Uses external special tokens to identify each user-specific concept

Cons

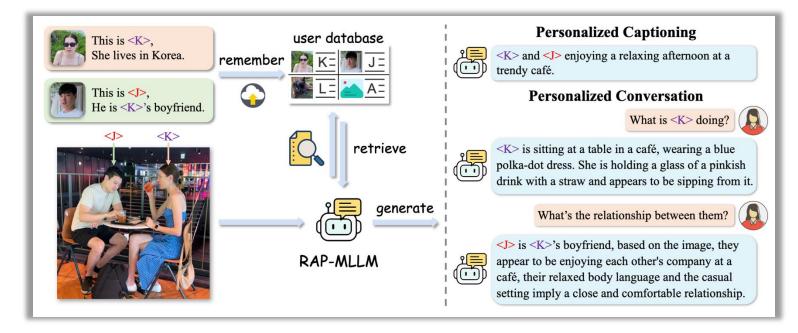
Still requires retraining each token when the new concepts emerge

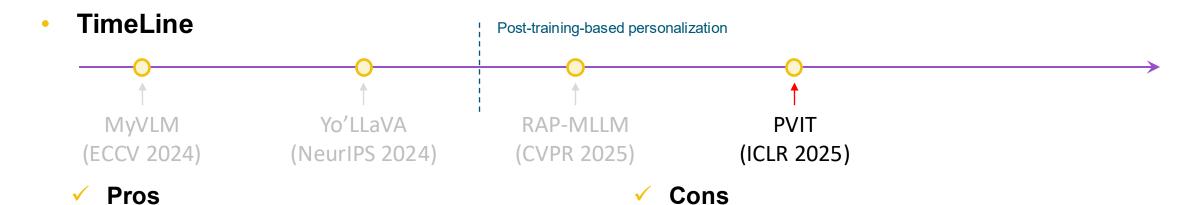




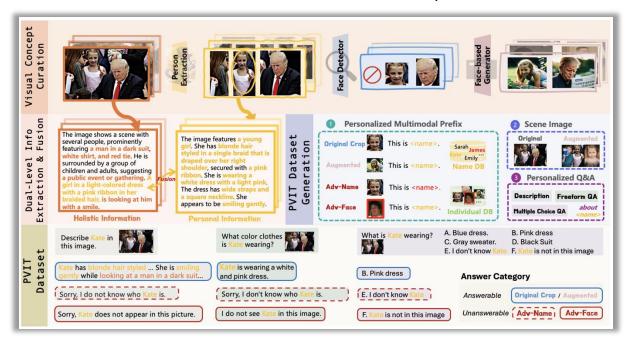
- ✓ Pros
 - The first post-training-based personalization method
 - It can perform Retrieval-enabled personalized tasks

- Cons
 - Needs lots of training data (210K) to post-train MLLM
 - Hard to generalize to real-world scenarios (e.g., multi-concept)



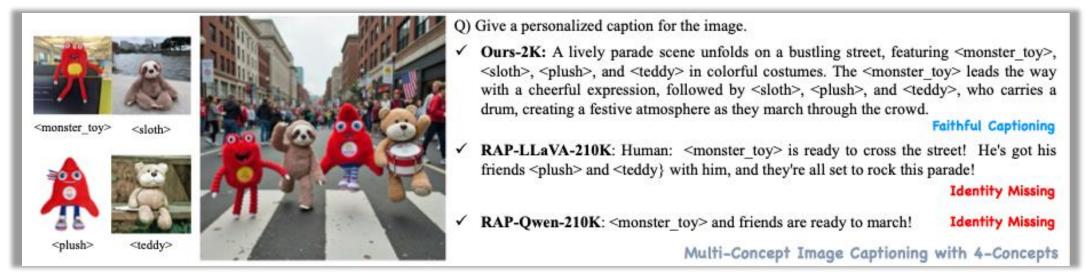


- Introduces a large-scale personalization benchmark (3M)
- Only covers human-related personalization scenarios
- Requires manual validation for each image



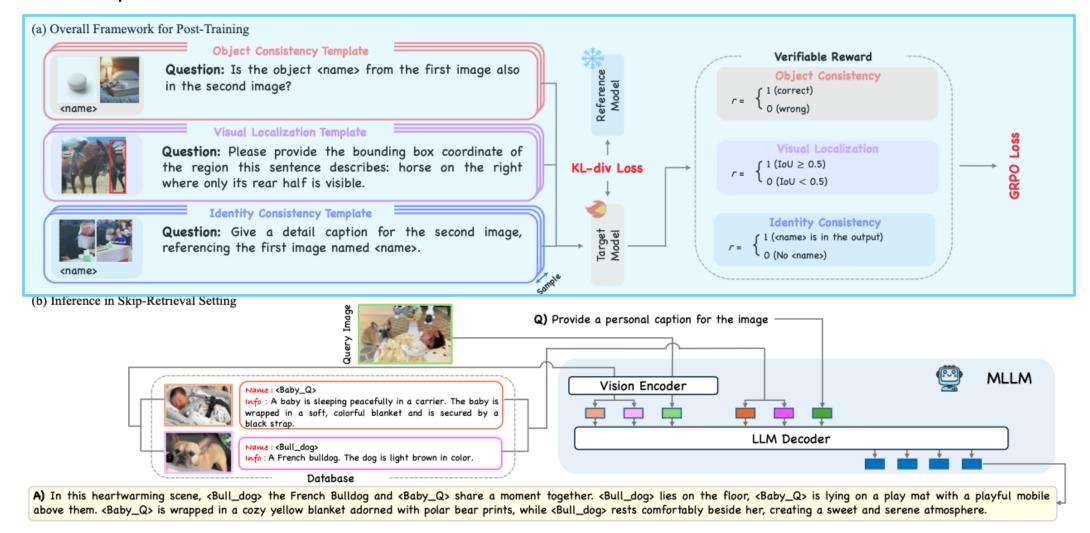
✓ TL;DR

- We propose a RL-based post-training pipeline for MLLM personalization
- RePIC shows generalizable personalized image captioning even for <u>unseen multi-concept settings</u>

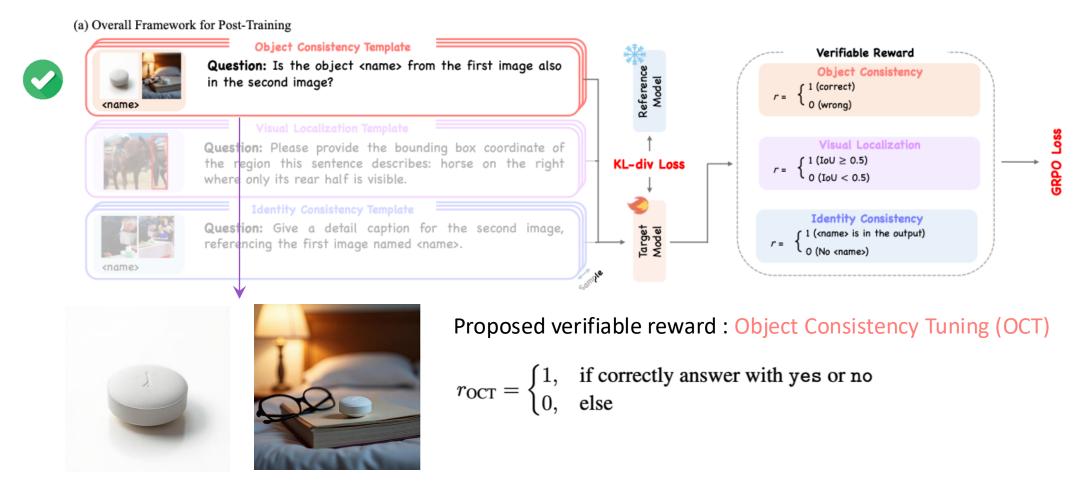


- Introduction
- Related Works
- Proposed Method
- Experimental Results
 - 1) Qualitative Results
 - 2) Quantitative Results
 - 3) Further Analysis
- Conclusions

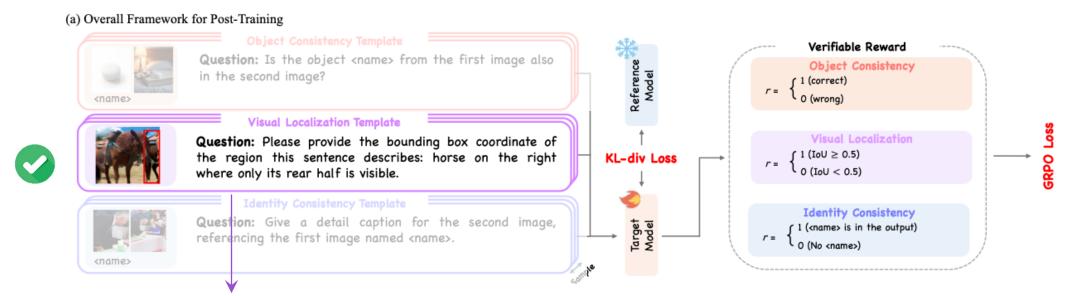
Overall Pipeline



Training Phase



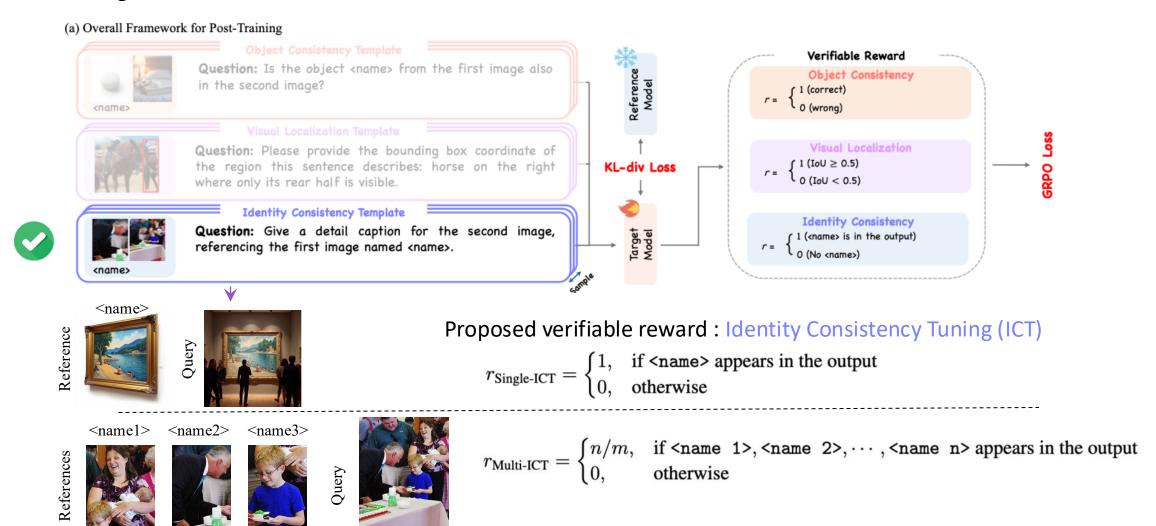
Training Phase



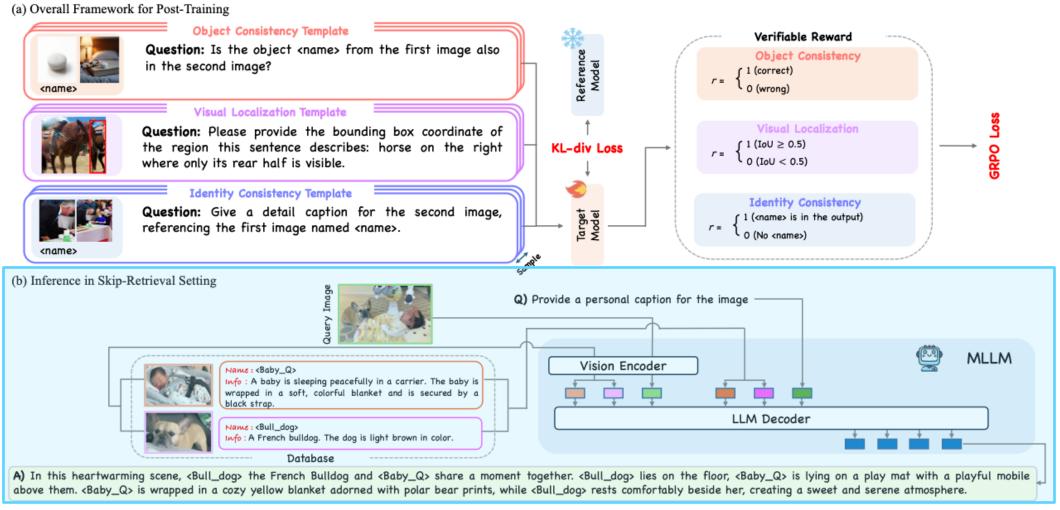
Proposed verifiable reward: Visual Localization Tuning (VLT)

$$r_{\text{VLT}} = \begin{cases} 1, & \text{if IoU} \ge 0.5 \\ 0, & \text{otherwise} \end{cases}$$

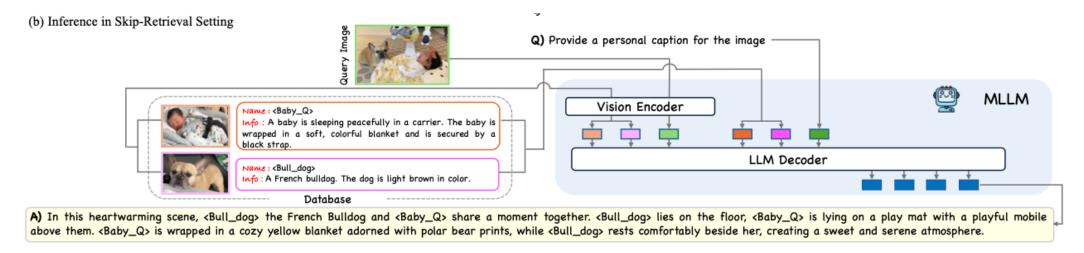
Training Phase



Overall Pipeline



Inference Phase



At inference time,

- a) Retrieved samples (image/text) are prepended to use as visual demonstrations
- b) MLLM provides personal captions for a query image incorporating the personal information

- Introduction
- Related Works
- Proposed Method
- Experimental Results
 - 1) Qualitative Results
 - 2) Quantitative Results
 - 3) Further Analysis
- Conclusions

Qualitative Results of Multi-Concept Image Captioning

Name: Q) Give a personalized caption of this image.

Character A>

<Character

Ours - Full: In this scene from the animated movie, Character_B are standing in a dimly lit room, looking surprised or concerned. The background suggests they might be inside a vehicle or a control room.

Correct Captioning

Qwen-2.5-VL: In a dimly lit room, Character_B stand facing each other, their expressions hinting at a mix of curiosity and anticipation.

Wrong Captioning

RAP-LLaVA: <Character_B> is a sly fox with a big grin. He's always up for an adventure.



RAP-Qwen: < Character A> is ready to help!

Identity Missing

Q) Give a personalized caption of this image.

Ours – Full: In this image, <J> and <K> are standing outside near a building with a colorful mural. They are both holding small objects in their hands and appear to be engaged in a conversation or activity together. The scene is bright and sunny, with greenery visible in the background.

Correct Captioning

Qwen-2.5-VL: A man and a woman are standing outside on a sunny day. The woman is wearing sunglasses and a blue polka-dotted dress while holding a small object in her hand. The man is also wearing sunglasses and a light-colored t-shirt, holding a similar object. They appear to be engaged in a conversation or activity together.

Identity Missing

RAP-LLaVA: <K> and <J> enjoying some ice cream.

Wrong Captioning

RAP-Qwen: <J> and <K> are enjoying some ice tea at a cafe.

Wrong Captioning

Quantitative Results for Single-Concept Personal Grounding Evaluation

Models	Seen Data	MyVLM [2]		Yo'LLaVA [37]			DreamBooth [43]			
		Pre.	Rec.	F1	Pre.	Rec.	F1	Pre.	Rec.	F1
Skip-Retrieval Setting										
PVIT-LLAVA	210K	17.1	1.8	3.3	20.1	2.1	3.8	26.5	16.5	20.3
RAP-LLAVA	210K	100	92.9	96.3	100	95.5	97.7	97.3	91.8	94.5
RAP-LLAVA	2K	100	49.4	66.1	50.6	48.6	49.6	68.4	65.8	67.1
RAP-Qwen	210K	100	98.8	99.4	100	99.8	99.8	100	100	100
Qwen-2.5 VL	0	100	56.8	72.4	100	33.3	50.0	96.0	76.6	85.2
Ours	2K	100	96.2	98.1	99.7	96.1	97.9	100	98.1	99.0
	Retrieval Setting									
Retrieval (Top-2)		97.6	95.9	96.7	83.6	82.9	83.3	99.3	96.2	97.7
RAP-LLAVA	210K	95.6	79.1	87.8	82.7	79.9	81.2	96.0	91.1	93.5
RAP-LLAVA	2K	79.2	53.8	64.1	71.2	52.2	64.4	69.5	66.5	68.0
RAP-Qwen	210K	95.5	87.9	91.6	79.2	75.1	76.2	98.7	94.3	96.4
Qwen-2.5 VL	0	91.5	50.6	65.2	77.4	42.3	55.2	95.2	75.3	84.1
Ours	2K	99.0	83.2	90.4	84.4	69.7	76.3	98.6	90.5	94.4

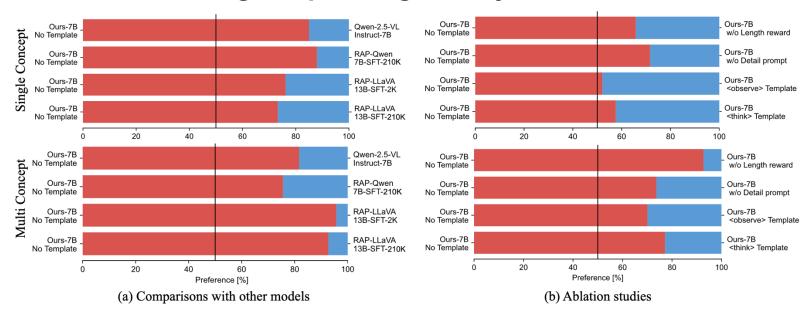
RePIC shows comparable personal grounding results compared to other data-centric SFT-based methods

Quantitative Results for Multi-Concept Personal Grounding Evaluation

Models	Seen Data	2-Concepts				4-Concepts							
		Skip-Retrieval		Retrieval			Skip-Retrieval			Retrieval			
		Pre.	Rec.	F1	Pre.	Rec.	F1	Pre.	Rec.	F1	Pre.	Rec.	F1
RAP-LLaVA	210K	100	93.9	96.9	99.3	89.6	94.5	52.9	4.3	7.9	16.7	3.1	5.2
RAP-LLaVA	2K	100	90.2	94.9	95.7	81.1	87.8	36.4	1.9	3.6	22.4	0.7	1.4
RAP-Qwen	210K	100	82.9	90.7	100	73.2	84.5	49.6	13.6	21.3	12.6	2.6	4.3
Qwen-2.5 VL	0	100	75.0	85.7	98.1	64.0	77.5	73.3	22.9	34.8	22.5	6.4	10.0
Ours - Full	2K	100	98.8	99.4	97.5	93.9	95.7	88.0	59.5	71.0	24.8	15.7	19.2

RePIC shows the best results for 2 (ID) and 4 (OOD)-concept settings

Preference Evaluations & Image Captioning Quality Evaluation



Types	Metrics	RAP-LLaVA	RAP-Qwen	Zero-Shot	Ours
Reference- based	BLEU [38] (10 ⁻ 2) CIDEr [53] METEOR [5] SPICE [3] BERTScore [63]	0.260 0.193 0.242 0.104 0.683	0.170 0.185 0.267 0.084 0.567	0.210 0.208 0.271 0.083 0.523	0.290 0.194 0.321 0.086 0.668

Types	Metrics	RAP-LLaVA	RAP-Qwen	Zero-Shot	Ours
Reference- free	CLIPScore [18] ImageReward [56]	0.332 -0.094	0.316 0.087	0.323 0.287	0.339 0.130

RePIC consistently outperforms competing baselines (preference) and achieves comparable or superior results
on quantitative metrics (caption quality)

- Introduction
- Related Works
- Proposed Method
- Experimental Results
 - 1) Qualitative Results
 - 2) Quantitative Results
 - 3) Further Analysis
- Conclusions

Conclusions & Limitations

- We propose RePIC, a strong baseline for personalized image captioning task with RL-based post-training
 - We alleviate the cost of collecting high-quality personal captions
- By leveraging verifiable rewards, tailored data and instructions, RePIC shows robust performance
 - We present generalizable personalized image captioning results on various scenarios
- This work only focuses on RL-based post-training in the image domain
 - > Future research could extend personalization to other modalities, such as audio and video

< Project Page >