Autoencoding Random Forests

Binh Duc Vu^{1*}

binh.vu@kcl.ac.uk

Marvin Wright^{2,3}

wright@leibniz-bips.de

Jan Kapar^{2,3}*

kapar@leibniz-bips.de

David S. Watson¹

david.watson@kcl.ac.uk

 1 King's College London 2 Leibniz Institute for Prevention Research and Epidemiology – BIPS 3 University of Bremen

*Equal contribution

NeurIPS 2025 November 20, 2025

Motivation - why autoencoding with random forests?

- Deep learning is state-of-the-art in representation learning, but:
 - o Struggles with mixed tabular data
 - Data hungry
 - Tuning-intense
 - Computationally heavy

Motivation - why autoencoding with random forests?

- Deep learning is state-of-the-art in representation learning, but:
 - o Struggles with mixed tabular data
 - Data hungry
 - Tuning-intense
 - Computationally heavy
- Random forests:
 - Natural handling of mixed tabular data
 - o Good performance on small data
 - o Robust off-the-shelf
 - Fast

Motivation - why autoencoding with random forests?

- Deep learning is state-of-the-art in representation learning, but:
 - o Struggles with mixed tabular data
 - Data hungry
 - Tuning-intense
 - Computationally heavy
- Random forests:
 - Natural handling of mixed tabular data
 - o Good performance on small data
 - Robust off-the-shelf
 - Fast
- \Rightarrow Can random forests learn useful representations and reconstruct data?

1. Introduction and analysis of (Breiman) random forest kernel

- 1. Introduction and analysis of (Breiman) random forest kernel
- 2. **Encoding**: **Spectral embeddings** via diffusion maps based on RF kernel similarities

- 1. Introduction and analysis of (Breiman) random forest kernel
- 2. **Encoding: Spectral embeddings** via diffusion maps based on RF kernel similarities
- 3. **Decoding**: Introduction and theoretical analysis of **exact** and **approximate methods**

- 1. Introduction and analysis of (Breiman) random forest kernel
- 2. **Encoding: Spectral embeddings** via diffusion maps based on RF kernel similarities
- 3. **Decoding**: Introduction and theoretical analysis of **exact** and **approximate methods**
- 4. Experiments: Competitive results for data visualization, compression, clustering and denoising

• Decision tree kernel for tree b:

$$\textit{k}^{(b)}(\mathbf{x},\mathbf{x}') = \mathbb{1}_{\{\mathsf{leaf}_b(\mathbf{x}) = \mathsf{leaf}_b(\mathbf{x}')\}}(\mathbf{x},\mathbf{x}')$$

• Decision tree kernel for tree b:

$$\textit{k}^{(\textit{b})}(\textbf{x},\textbf{x}') = \mathbb{1}_{\{\mathsf{leaf}_\textit{b}(\textbf{x}) = \mathsf{leaf}_\textit{b}(\textbf{x}')\}}(\textbf{x},\textbf{x}')$$

• (Breiman) random forest kernel: Normalized average of tree kernels

$$k_n^{RF}(\mathbf{x}, \mathbf{x}') = \frac{1}{B} \sum_{b=1}^{B} \frac{k^{(b)}(\mathbf{x}, \mathbf{x}')}{\sum_{i=1}^{n} k^{(b)}(\mathbf{x}, \mathbf{x}_i)}$$

• Decision tree kernel for tree b:

$$\textit{k}^{(\textit{b})}(\textbf{x},\textbf{x}') = \mathbb{1}_{\{\mathsf{leaf}_\textit{b}(\textbf{x}) = \mathsf{leaf}_\textit{b}(\textbf{x}')\}}(\textbf{x},\textbf{x}')$$

• (Breiman) random forest kernel: Normalized average of tree kernels

$$k_n^{RF}(\mathbf{x}, \mathbf{x}') = \frac{1}{B} \sum_{b=1}^{B} \frac{k^{(b)}(\mathbf{x}, \mathbf{x}')}{\sum_{i=1}^{n} k^{(b)}(\mathbf{x}, \mathbf{x}_i)}$$

• Decision tree kernel for tree b:

$$\textit{k}^{(\textit{b})}(\textbf{x},\textbf{x}') = \mathbb{1}_{\{\mathsf{leaf}_\textit{b}(\textbf{x}) = \mathsf{leaf}_\textit{b}(\textbf{x}')\}}(\textbf{x},\textbf{x}')$$

• (Breiman) random forest kernel: Normalized average of tree kernels

$$k_n^{RF}(\mathbf{x}, \mathbf{x}') = \frac{1}{B} \sum_{b=1}^{B} \frac{k^{(b)}(\mathbf{x}, \mathbf{x}')}{\sum_{i=1}^{n} k^{(b)}(\mathbf{x}, \mathbf{x}_i)}$$

- Properties:
 - Positive semi-definite
 - Kernel matrix $\mathbf{K} \coloneqq \left(k_n^{\mathsf{RF}}(\mathbf{x}_i, \mathbf{x}_j)\right)_{i, i = 1, \dots, n} \in [0, 1]^{n \times n}$ doubly stochastic
 - Asymptotically universal
 - Asymptotically characteristic

• Encoding:

- Encoding:
 - 1. Train random forest (supervised/unsupervised)

• Encoding:

- 1. Train random forest (supervised/unsupervised)
- 2. Calculate $\textbf{kernel matrix}\;\mathbf{K}$ for training data

• Encoding:

- 1. Train random forest (supervised/unsupervised)
- 2. Calculate kernel matrix K for training data
- 3. Calculate eigen-decomposition $\mathbf{K} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$

• Encoding:

- 1. Train random forest (supervised/unsupervised)
- 2. Calculate kernel matrix K for training data
- 3. Calculate **eigen-decomposition** $\mathbf{K} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$
- 4. **Training data embeddings:** Apply **diffusion map** at desired timestep t and latent dimension $d_{\bf Z}$ to calculate spectral embedding ${\bf Z}=\sqrt{n}{\bf V}_{[d_z]}{\bf \Lambda}_{[d_z]}^t$

• Encoding:

- 1. Train random forest (supervised/unsupervised)
- 2. Calculate kernel matrix K for training data
- 3. Calculate **eigen-decomposition** $\mathbf{K} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$
- 4. **Training data embeddings:** Apply **diffusion map** at desired timestep t and latent dimension $d_{\bf Z}$ to calculate spectral embedding ${\bf Z}=\sqrt{n}{\bf V}_{[d_z]}{\bf \Lambda}_{[d_z]}^t$
- 5. **Test data embeddings**: Calculate test-train cross-kernel matrix \mathbf{K}_0 and use **Nyström formula** $\mathbf{Z}_0 = \mathbf{K}_0 \mathbf{Z} \mathbf{\Lambda}_{[d_z]}^{-1}$

• Encoding:

- 1. Train random forest (supervised/unsupervised)
- 2. Calculate kernel matrix K for training data
- 3. Calculate **eigen-decomposition** $\mathbf{K} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$
- 4. **Training data embeddings:** Apply **diffusion map** at desired timestep t and latent dimension $d_{\mathbf{Z}}$ to calculate spectral embedding $\mathbf{Z} = \sqrt{n} \mathbf{V}_{[d_z]} \mathbf{\Lambda}_{[d_z]}^t$
- 5. **Test data embeddings**: Calculate test-train cross-kernel matrix \mathbf{K}_0 and use **Nyström formula** $\mathbf{Z}_0 = \mathbf{K}_0 \mathbf{Z} \mathbf{\Lambda}_{[d_z]}^{-1}$

Decoding:

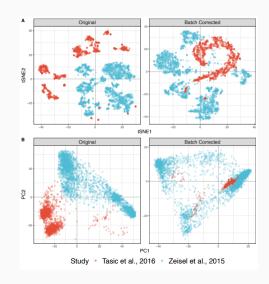
- o Best-performing in practice: **k-Nearest Neighbors** in latent space
- o Universally consistent, fast, robust

• **Reconstruction:** competitive on MNIST and tabular data.

- **Reconstruction:** competitive on MNIST and tabular data.
- **Benchmark:** best performance in 12/20 datasets.

Dataset	RFAE	TVAE	TTVAE	AE	VAE
abalone	0.167 (0.002)	0.309 (0.005)	0.260 (0.003)	0.230 (0.025)	0.211 (0.006)
adult	0.326 (0.007)	0.158 (0.005)	0.195 (0.007)	0.401 (0.003)	0.391 (0.004)
banknote	0.100 (0.012)	0.312 (0.013)	0.276 (0.023)	0.724 (0.023)	0.771 (0.013)
bc	0.333 (0.003)	0.564 (0.003)	0.359 (0.005)	0.287 (0.008)	0.578 (0.003)
car	0.320 (0.011)	0.195 (0.014)	0.107 (0.015)	0.349 (0.012)	0.313 (0.011)
churn	0.352 (0.012)	0.603 (0.011)	0.422 (0.014)	0.861 (0.005)	0.731 (0.006)
credit	0.315 (0.004)	0.450 (0.005)	0.375 (0.011)	0.450 (0.005)	0.456 (0.004)
diabetes	0.479 (0.016)	0.726 (0.007)	0.643 (0.014)	0.799 (0.011)	0.895 (0.004)
dry_bean	0.137 (0.002)	0.273 (0.002)	0.303 (0.008)	0.083 (0.014)	0.206 (0.001)
forestfires	0.575 (0.008)	0.804 (0.003)	0.705 (0.008)	0.782 (0.007)	0.790 (0.003)
hd	0.432 (0.008)	0.582 (0.003)	0.605 (0.006)	0.892 (0.003)	0.916 (0.002)
king	0.308 (0.008)	0.352 (0.006)	0.348 (0.008)	0.377 (0.011)	0.518 (0.004)
marketing	0.292 (0.009)	0.304 (0.005)	0.259 (0.011)	0.357 (0.007)	0.372 (0.004)
mushroom	0.083 (0.001)	0.093 (0.003)	0.011 (0.003)	0.055 (0.004)	0.035 (0.004)
obesity	0.227 (0.008)	0.354 (0.004)	0.299 (0.008)	0.306 (0.009)	0.358 (0.003)
plpn	0.176 (0.006)	0.282 (0.006)	0.224 (0.011)	0.384 (0.013)	0.410 (0.009)
spambase	0.558 (0.005)	0.825 (0.002)	0.807 (0.003)	0.446 (0.010)	0.784 (0.001)
student	0.371 (0.002)	0.424 (0.001)	0.426 (0.004)	0.536 (0.003)	0.551 (0.002)
telco	0.177 (0.003)	0.155 (0.003)	0.091 (0.007)	0.128 (0.005)	0.130 (0.005)
wq	0.240 (0.005)	0.691 (0.008)	0.759 (0.006)	0.467 (0.019)	0.708 (0.004)
Average Rank	1.80	3.38	2.45	3.27	4.10

- Reconstruction: competitive on MNIST and tabular data.
- **Benchmark:** best performance in 12/20 datasets.
- **Applications:** denoising scRNA-seq, latent clustering, compression.



Discussion & Outlook

• **Contributions:** Theoretical kernel foundation, practical encoding/decoding, strong empirical results.

Advantages:

- Works with any RF variant (RF, URF, ARF)
- o No end-to-end training required
- Limitations: Computational cost, sensitive to hyperparameters.

Next:

- Distilled Random Forests
- Adaptive RF kernels
- Tree-based generative models (XGBoost, GBM)