AdaSTaR: Adaptive Data Sampling for Training Self-Taught Reasoners

Woosung Koh, Wonbeen Oh, Jaein Jang, MinHyung Lee, Hyeongjin Kim, Ah Yeon Kim, Joonkee Kim, Junghyun Lee, Taehyeon Kim, Se-Young Yun

Still using sample inefficient Self-Taught Reasoners (Rejection Fine-tuning)?

Input: $\mathcal{D}, \pi_{\theta}^{t=1}, e$

1 $\tilde{t} \leftarrow \operatorname{dict}\{i : \tilde{t}_i = 0\}_{i=1}^N$;

2 $w \leftarrow \text{dict}\{i : w_i = 0\}_{i=1}^N$;

3 init HieMinHeap $(\mathcal{D}, \tilde{t}, w)$;

 $\mathcal{D}_{+}^{t} \leftarrow \emptyset, m \leftarrow 0;$

while $|\mathcal{D}_{+}^{t}| < \beta^{t}$ do

 $m \leftarrow m + 1$;

4 for iteration $t = 1, \cdots$ do

/* AdaD (§3.1; lines 1-14) ←

 $w^{tmp} \leftarrow \text{dict}\{i: w_i^{tmp} = 0\}_{i=1}^N$;

 $i \leftarrow \texttt{HieMinHeap}.peek_next;$

for sample $k = 1, \dots, K$ do

 $\langle \hat{c}_i, \hat{y}_i \rangle \leftarrow \pi_{\theta}^t(e, x_i);$

if $\hat{y}_i = y_i$ then

 $\alpha, \pi_{\theta}^{t+1} \leftarrow \text{Train}(\pi_{\theta}^t, \mathcal{D}_+^t);$

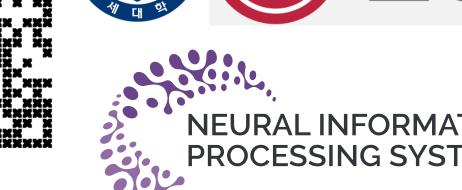
 $\tilde{t}_i \leftarrow t, w_i \leftarrow w_i^{tmp};$

 $i \leftarrow \texttt{HieMinHeap}.pop$;

 $\texttt{HieMinHeap}.push(i, \tilde{t}_i, w_i)$;

for $1, \dots, |m\alpha^2|$ do

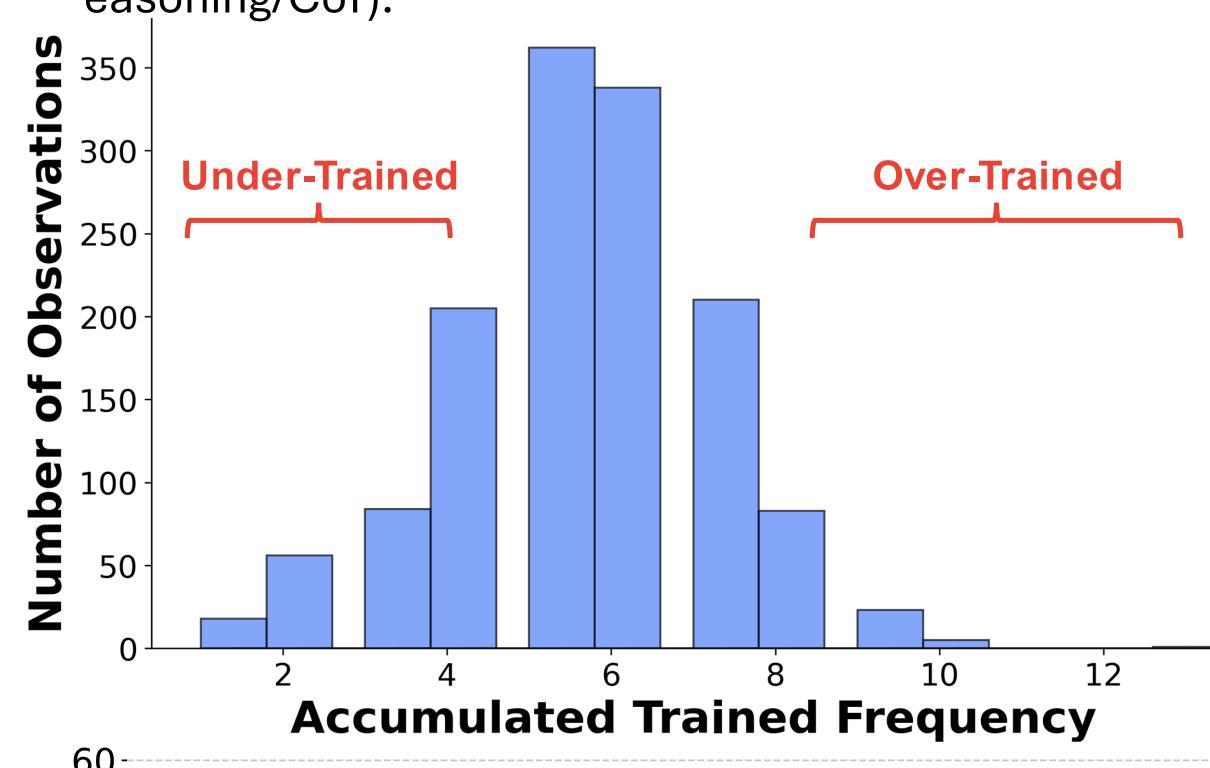
15

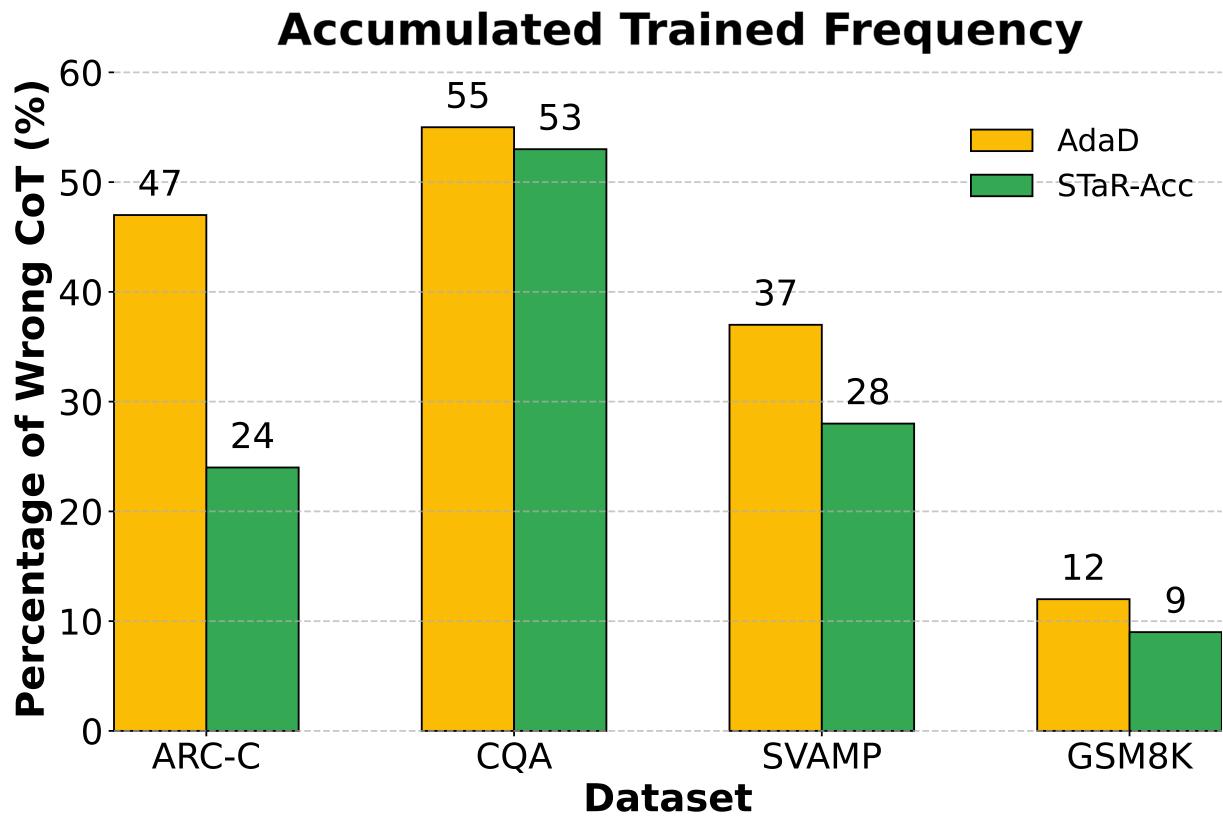

 $w_i^{tmp} \leftarrow \frac{k-1}{k} w_i^{tmp} + \frac{1}{k} \mathbb{I}[\hat{y}_i = y_i];$

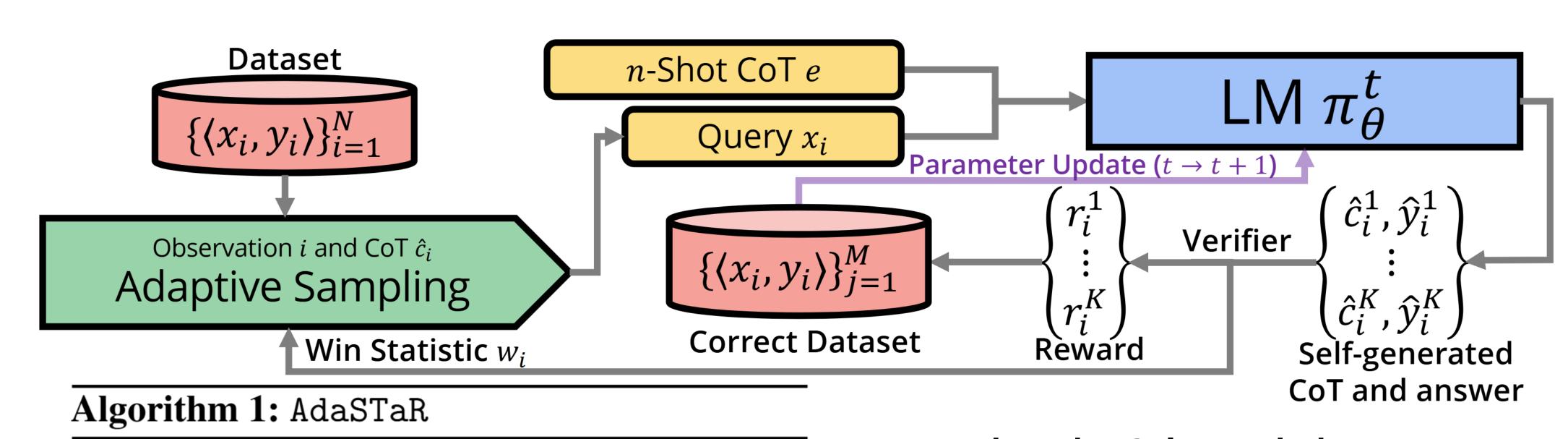
 $\mathcal{D}_+^t \leftarrow \mathcal{D}_+^t \cup \{\langle x_i, \hat{c}_i, \hat{y}_i \rangle\};$

/* AdaC (§3.2; lines 15-19) < */

Paper





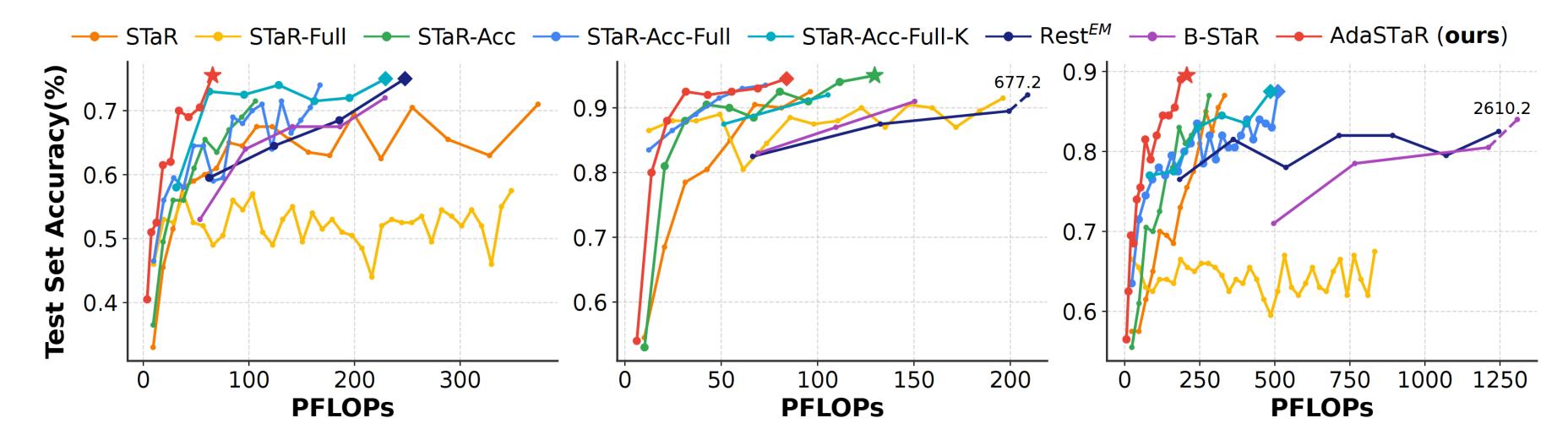

Existing Problem

- STaR (or RFT) allows LMs to improve iteratively by training on their own correct CoT solutions.
- Standard STaR relies on random data sampling.
- Inefficiency: Random sampling causes the model to <u>ov</u> er-train on easy examples (solved repeatedly) while und er-training on challenging ones.
- False Positives: Simply prioritizing "hard" problems inc reases <u>false positives</u> (correct final answer, but flawed r easoning/CoT).

Method: Adaptive Sampling for Diversity and Curriculum

- Pseudocode: Color-coded
 - Black: Existing STaR
 - Green: AdaSTaR
 - Diversity (AdaD): Encourage more diverse training samples (\forall standard deviation)
 - \tilde{t}_i : Last sampled iteration
 - w_i : Win statistic (accuracy of i at \tilde{t}_i)
- Curriculum (AdaC): Sample easier observations earlier and harder later
 - α: Train accuracy

☑ TL;DR: Main Contribution


- AdaSTaR solves the under-training and over-training of examples (data points) during rejection fine-tuning (RFT) selfimprovement post-training.
- 2. This is achieved using a computeoverhead free sampling algorithm.
- 3. This algorithm results in improved posttraining **performance**, and significantly reduces training FLOPs.

Empirical Study

- Achieves best test accuracy in 6/6 benchmarks and reduced training FLOPs by an average of 58.6%.
- Pre-trained Base Models: Llama 3.2 3B, Qwen 2.5 3B, Gemma 7B.

Evaluation	ARC-C			CQA			CLadder 1.5		
Metric	Acc. (†)	t	PFLOPs (↓)	Acc. (†)	t	PFLOPs (↓)	Acc. (↑)	t	PFLOPs (↓)
SFT	61.4	1.0 e	7.0	71.8	1.0 e	24.0	31.0	7.0 e	382.3
SFT + 8-CoT	59.0	1.5 e	10.5	71.6	2.5 e	60.1	43.6	3.0 e	163.9
SFT + 5-SC	63.8	4.5 e	31.6	76.4	2.5 e	60.1	45.2	8.0 e	437.0
STaR	71.6	13 it	351.4	72.2	25 it	2877.8	53.4	25 it	8427.3
STaR-Full	69.8	27 it	739.4	72.2	12 it	1502.7	53.8	19 it	6523.7
STaR-Acc	<u>73.2</u>	18 it	639.8	74.6	19 it	1745.3	<u>94.2</u>	28 it	9663.0
STaR-Acc-Full	71.8	5 it	135.8	<u>76.0</u>	10 it	1158.3	<u>94.2</u>	15 it	4465.4
STaR-Acc-Full-K	71.4	3 it	302.2	73.0	4 it	1760.9	80.0	6 it	6382.3
${\tt ReST}^{EM}$	70.8	4 it	637.1	72.8	2 it	1548.4	53.4	5 it	10498.3
B-STaR	67.8	2 it	222.8	68.4	2 it	800.9	52.8	4 it	3937.3
AdaSTaR (ours)	73.8	10 it	<u>174.4</u> (↓ 72.7%)	78.0	20 it	779.3 (\ 32.7%)	95.6	23 it	3610.0 (↓ 19.2%)
Evaluation	ANLI			GSM8K			SVAMP		

Evaluation	ANLI			GSM8K			SVAMP		
Metric	Acc. (†)	t	PFLOPs (↓)	Acc. (†)	t	PFLOPs (↓)	Acc. (†)	t	PFLOPs (↓)
SFT	64.2	4 e	262.9	61.0	2.5 e	177.3	57.0	5.5 e	21.7
SFT + 8-CoT	65.2	5 e	328.7	68.0	1 e	70.9	61.5	7.5 e	29.6
SFT + 5-SC	49.2	2 e	131.5	67.2	2.5 e	177.3	61.5	5.5 e	21.7
STaR	61.0	23 it	4195.3	<u>76.0</u>	4 it	409.2	71.0	20 it	373.8
STaR-Full	57.6	13 it	2604.6	72.6	4 it	684.8	57.5	37 it	348.5
STaR-Acc	<u>64.8</u>	22 it	3528.4	77.0	3 it	<u>305.2</u>	71.5	10 it	<u>106.2</u>
STaR-Acc-Full	64.6	5 it	986.0	74.6	2 it	333.0	74.0	18 it	167.3
STaR-Acc-Full-K	58.8	4 it	2528.4	77.0	2 it	1456.5	<u>75.0</u>	7 it	229.3
${\tt ReST}^{EM}$	63.0	9 it	10938.5	77.0	2 it	2229.1	<u>75.0</u>	4 it	247.8
B-STaR	59.4	10 it	6373.4	73.6	3 it	2120.2	72.0	5 it	228.9
AdaSTaR (ours)	66.8	21 it	<u>1340.9</u> (\ 62.0%)	77.0	2 it	19.3 (↓ 93.7%)	75.5	9 it	65.7 (↓ 71.3%)

- Star ★ and diamond ◆ represents the best and second best accuracy.
- Training curve visualized up to the peak performance; afterwards it overfits.
- Dashed line represents methods that use large FLOPs that lead outside of the figure; numeric annotation denotes FLOPs at peak performance.