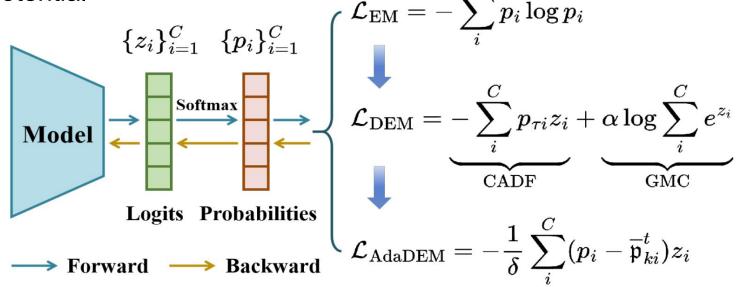


Decoupled Entropy Minimization

Jing Ma, Hanlin Li, Xiang Xiang

Introduction

- Entropy Minimization (EM)
 - Confident & Accurate Predictions
 - "Sharper" outputs and High-confidence predictions
 - "Coupled" mechanism limits its potential
 - Reward Collapse
 - Easy-Class Bias



AdaDEM: Adaptive Decoupled Entropy Minimization

Introduction

- Decoupled EM (DEM)
 - EM is an "coupling" of two opposing forces:
 - Cluster Aggregation Driving Factor (CADF):

It rewards classes with higher confidence, pushing the model's prediction to "collapse" toward one extreme.

Gradient Mitigation Calibrator (GMC):

It penalizes classes that are already overconfident, preventing the model from becoming too "self-assured".

$$H(\mathbf{z}) = -\sum_{i=1}^{C} p_i(\mathbf{z}) \log p_i(\mathbf{z})$$

$$H(\mathbf{z}) = -\sum_{i=1}^{C} p_i(\mathbf{z}) \log \frac{e^{z_i}}{\sum_{j=1}^{C} e^{z_j}} = -\sum_{i=1}^{C} p_i(\mathbf{z}) z_i + \log \sum_{i=1}^{C} e^{z_i}$$
CADF
GMC

Introduction

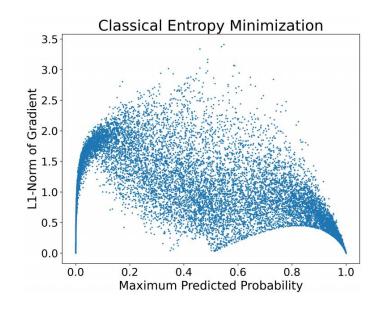
➤ The Flaws of EM

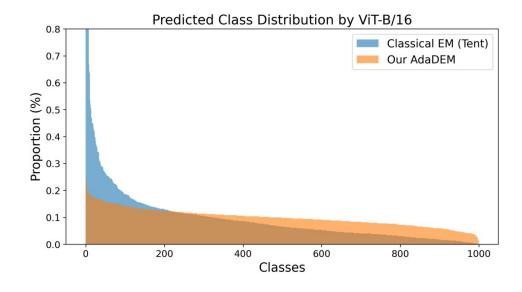
Reward Collapse:

The samples the model has already "learned"
 contribute almost no further force during subsequent
 optimization, which limits their potential for additional
 performance gains.

Easy-Class Bias:

 This causes the model's predicted distribution to deviate from the true label distribution, showing a particular bias towards classes that are easier to learn.





AdaDEM

Normalized Rewards to Overcome "Reward Collapse":

- Normalizing the rewards generated by the CADF using the L1 norm.
- It ensures that regardless of how high a sample's initial confidence is, the <u>normalized reward signal</u> <u>remains at a stable magnitude</u>.
- This guarantees that even <u>high-confidence samples continue to contribute to the model's optimization</u>, thereby breaking through the performance bottleneck.

$$H(\mathbf{z}) = -\frac{1}{\delta} \sum_{i=1}^{C} (p_i(\mathbf{z}) - \overline{\mathfrak{p}}_{ki}^t) z_i \quad \Longrightarrow \quad \delta = \|-\partial T(\mathbf{z}|x, \theta)/\partial \mathbf{z}\|_1$$

The forum of AdaDEM

T is the CADF

z is the model's output logits

AdaDEM

Marginal Entropy Calibrator (MEC) to Mitigate "Easy-Class Bias":

- A designed Marginal Entropy Calibrator (MEC) is used to replace the original GMC.
- Unlike GMC only focuses on the prediction of a single sample, MEC takes a global perspective.
 It estimates the marginal class distribution and uses this estimation to calibrate the gradients.
- This allows the model to reduce its excessive preference for certain easy-to-learn classes and ensuring the final output distribution <u>aligns more closely with the true label distribution</u>.

$$H(\mathbf{z}) = -\frac{1}{\delta} \sum_{i=1}^{C} (p_i(\mathbf{z}) - \overline{\mathbf{p}}_{ki}^t) z_i \quad \Longrightarrow \quad \overline{\mathbf{p}}_k^t = 0.9 \cdot \overline{\mathbf{p}}_k^{t-1} + 0.1/N_k \cdot \sum^{N_k} \mathbf{p}_k^t$$

The forum of AdaDEM

t is the iteration index

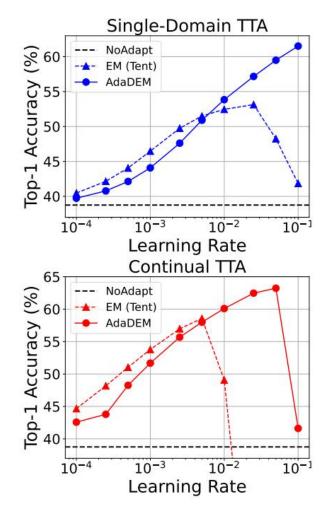
Experiments

In Single-domain & Continual <u>Test-Time Adaptation (TTA)</u> tasks, AdaDEM delivered outstanding performance, outperforming the EM and its upper-bound variant, DEM*, significantly less sensitive to the learning rate.

Table 2: Experiments on single-domain & continual TTA tasks (left) and the test-time prompt tuning task (right). Top-1 classification accuracy (%) is reported. We highlight the highest accuracy in **bold** and the second best as underline. Δ denotes the performance improvement relative to the baselines.

Methods	Single-D	omain	Continual		
Methods	Mean	Δ	Mean	Δ	
NoAdapt	38.8±0.00	-	38.8±0.00	Ē	
Tent [†]	53.1±0.65	+0.0	58.6±0.09	+0.0	
+ DEM*	56.0±0.32	+2.9	64.1±0.05	+5.5	
+ AdaDEM	61.5±0.20	+8.4	63.2±0.16	+4.6	
Tent	52.7±0.10	+0.0	48.5±0.71	+0.0	
+ DEM*	55.1±0.11	+2.4	64.5±0.14	+16.0	
+ AdaDEM	66.2±0.12	+13.5	64.4±0.02	+15.9	
ETA	65.1±0.10	+0.0	64.2±0.04	+0.0	
+ DEM*	66.3±0.04	+1.2	65.7±0.04	+1.5	
+ AdaDEM	66.8±0.02	+1.7	66.1±0.01	+1.9	
EATA	62.2±0.14	+0.0	64.9±0.08	+0.0	
+ DEM*	64.4±0.30	+2.2	66.2±0.07	+1.3	
+ AdaDEM	65.3±0.11	+3.1	66.4±0.04	+1.5	
DeYO	62.6±0.32	+0.0	57.6±0.36	+0.0	
+ DEM*	65.6±0.03	+3.0	65.4±0.12	+7.8	
+ AdaDEM	62.6±0.10	+0.0	59.0±0.05	+1.4	
SAR	54.2±0.07	+0.0	57.0±0.05	+0.0	
+ DEM*	57.9±0.04	+3.7	62.4±0.03	+5.4	
+ AdaDEM	65.7±0.07	+11.5	63.0±0.05	+6.0	

Methods	-1K	-A	ImageNet -V2.	-R.	-S.	Avg.	Δ			
CLIP-RN50										
Zero-Shot	58.2±0.00	21.8±0.00	51.4±0.00	56.2±0.00	33.4±0.00	44.2±0.00	+0.0			
Ensemble	59.8±0.00	23.2±0.00	52.9±0.00	60.7±0.00	35.5 ± 0.00	46.4±0.00	+2.2			
TPT	60.7±0.07	26.1±0.10	54.6±0.02	58.9±0.08	35.2±0.09	47.1±0.06	+2.9			
+ DEM*	61.3±0.09	25.5±0.07	55.0±0.10	59.7±0.12	35.6±0.08	47.4±0.04	+3.2			
+ AdaDEM	60.7±0.04	29.2±0.19	54.8±0.22	58.8±0.05	35.4±0.03	47.8±0.07	+3.6			
СоОр	63.3±0.00	23.1±0.00	55.4±0.00	56.6±0.00	34.7±0.00	46.6±0.00	+2.4			
TPT (CoOp)	65.4±0.06	28.9±0.14	58.2±0.10	59.0±0.09	36.3±0.15	49.6±0.07	+5.4			
+ AdaDEM	65.6 ±0.05	31.3±0.10	58.5 ±0.22	59.3±0.10	36.3 ±0.11	50.2±0.06	+6.0			
	CLIP-ViT-B/16									
Zero-Shot	66.7±0.00	47.9±0.00	60.9±0.00	74.0±0.00	46.1±0.00	59.1±0.00	+0.0			
Ensemble	68.3±0.00	49.9 ± 0.00	61.9±0.00	77.7±0.00	48.2±0.00	61.2±0.00	+2.1			
TPT	69.0±0.04	54.5±0.09	63.4±0.13	77.0±0.06	48.0±0.13	62.4±0.05	+3.3			
+ DEM*	68.9±0.03	54.8±0.09	63.5±0.11	77.1±0.08	47.9±0.06	62.5±0.06	+3.4			
+ AdaDEM	69.4±0.12	58.8±0.18	64.0±0.06	77.6±0.21	48.6±0.05	63.7±0.05	+4.6			
CoOp	71.5±0.00	49.7±0.00	64.2±0.00	75.2±0.00	48.0±0.00	61.7±0.00	+2.6			
TPT (CoOp)	73.6±0.05	57.9±0.12	66.9±0.08	77.2±0.04	49.2±0.07	64.9±0.06	+5.8			
+ AdaDEM	73.7±0.07	60.3 ±0.11	66.9 ±0.19	77.9 ±0.14	49.3±0.07	65.6±0.02	+6.5			



Experiments

> Semi-Supervised Learning (SSL)

Table 3: Experiments on semi-supervised learning tasks. We report the average Top-1 classification accuracy (%) under different numbers of labeled samples. We highlight the highest accuracy in **bold** and the second best as <u>underline</u>. Δ denotes the performance improvement relative to the baselines.

Methods	CIFAR-10		CIFAR-100		STL-10		EuroSat		TissueMNIST		Semi-Aves	
Wiethous	Mean	Δ	Mean	Δ	Mean	Δ	Mean	Δ	Mean Δ		Mean	Δ
Ent. Min.	96.4±1.9	+0.0	72.6±0.5	+0.0	82.4±1.6	+0.0	76.5±3.6	+0.0	47.3±2.6	+0.0	59.9±0.7	+0.0
+ AdaDEM	97.2±0.2	+0.8	75.8±0.3	+3.2	84.8±0.3	+2.4	83.7±0.8	+7.2	49.3±1.3	+2.0	61.0±0.2	+1.1
Vat (w/ Ent. Min.)	97.4±2.0	+0.0	77.5±0.7	+0.0	85.4±0.9	+0.0	86.6±5.4	+0.0	45.2±4.8	+0.0	61.0±0.4	+0.0
+ AdaDEM	98.5±0.1	+1.1	78.8±0.7	+1.3	86.9±0.1	+1.5	91.2±0.9	+4.6	49.4±0.6	+4.2	61.8±0.0	+0.8
MixMatch	98.5±0.3	+0.0	73.8±0.4	+0.0	82.9±2.1	+0.0	79.3±4.3	+0.0	48.0±1.7	+0.0	62.6±0.2	+0.0
+ AdaDEM	98.3±0.6	-0.2	74.8±0.2	+1.0	85.2±0.1	+2.3	83.9±2.4	+4.6	50.0 ±0.9	+2.0	62.5±0.1	-0.1
FixMatch	98.4±0.7	+0.0	79.3±0.6	+0.0	88.5±1.2	+0.0	91.9±3.6	+0.0	46.7±3.3	+0.0	68.2±0.3	+0.0
+ AdaDEM	98.7±0.2	+0.3	79.5±0.9	+0.2	87.9±0.8	-0.6	96.9±0.7	+5.0	49.9±1.3	+3.2	67.9±0.1	-0.3
FreeMatch	98.9±0.0	+0.0	82.6±0.1	+0.0	89.7±1.6	+0.0	95.8±1.0	+0.0	45.6±3.3	+0.0	67.0±0.3	+0.0
+ AdaDEM	99.0±0.1	+0.1	83.1±0.1	+0.5	91.6±0.2	+1.9	95.9±0.1	+0.1	47.9±0.4	+2.3	67.3±0.2	+0.3

➤ Unsupervised Domain Adaptation (UDA) for Semantic Segmentation

Table 4: Experiments on unsupervised domain adaptation task of semantic segmentation. Standard mIoU (%) is reported.

Methods	MinEnt	+ AdaDEM	AdvEnt	+ DEM*	+ AdaDEM
mIoU	41.6±0.47	42.7±0.13	43.6±0.19	44.6±0.32	44.9±0.17
Δ	+0.0	+1.1	+0.0	+1.0	+1.3

Experiments

Class-Imbalanced / Long-Tail (LT) Classification

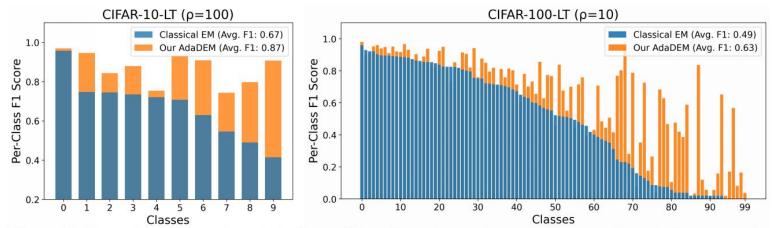


Figure 5: Experiments on class-imbalanced benchmarks. ρ denotes the sample ratio between the most and least populous classes. Both per-class F1 scores and the average F1 score are reported.

Reinforcement Learning (RL)

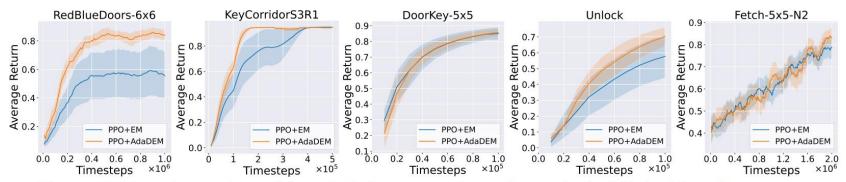


Figure 6: Experimental results on Reinforcement Learning tasks in Minigrid environments.

Thank You

Get the performance upgrade with just one line of code.

More interesting analyses in the paper!

Code available on Github!