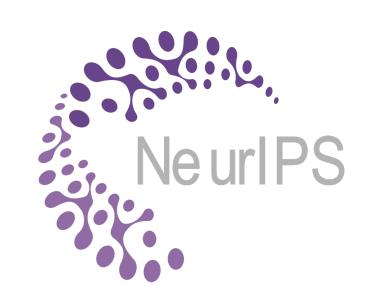


Self-Supervised Direct Preference Optimization for Text-to-Image Diffusion Models

Liang Peng · Boxi Wu · Haoran Cheng · Yibo Zhao · Xiaofei He Fabu Inc., Zhejiang University



Motivation & Abstract

Method	V	let	th	0	d	
--------	---	-----	----	---	---	--

Experiments & Results

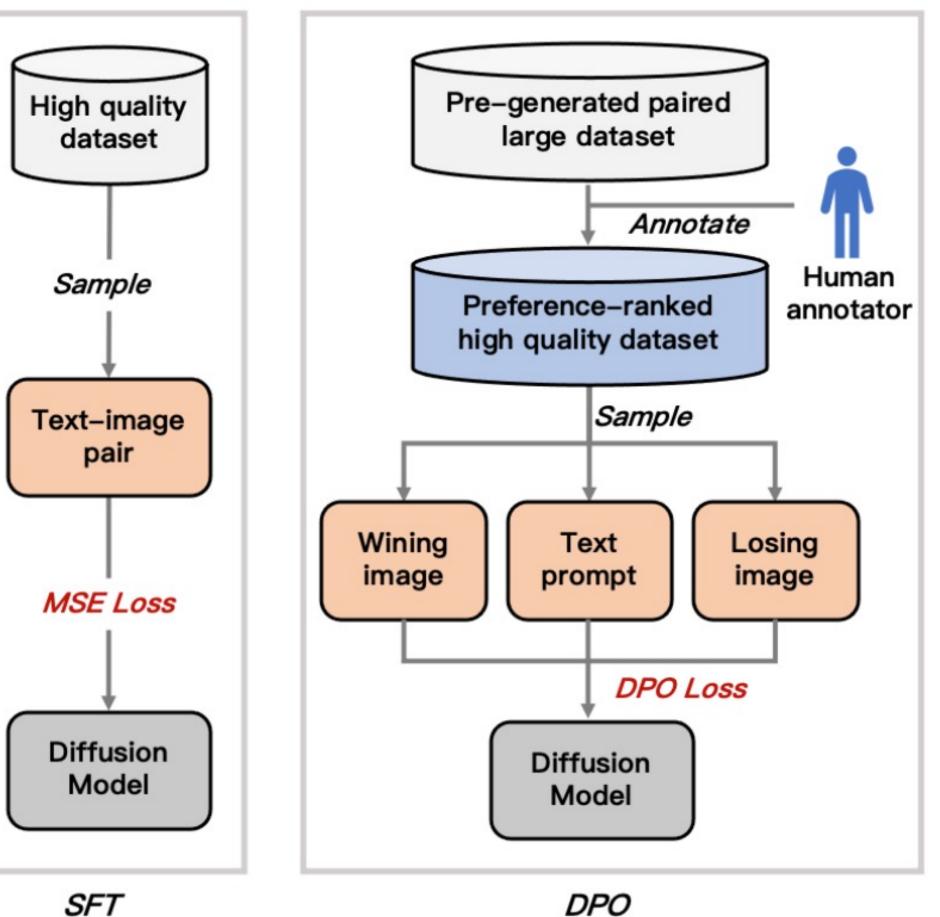
Data requirements	SFT	Self-DPO	DPO
Text Caption Image	✓	✓	√
Extra Preference Image	_	_	√

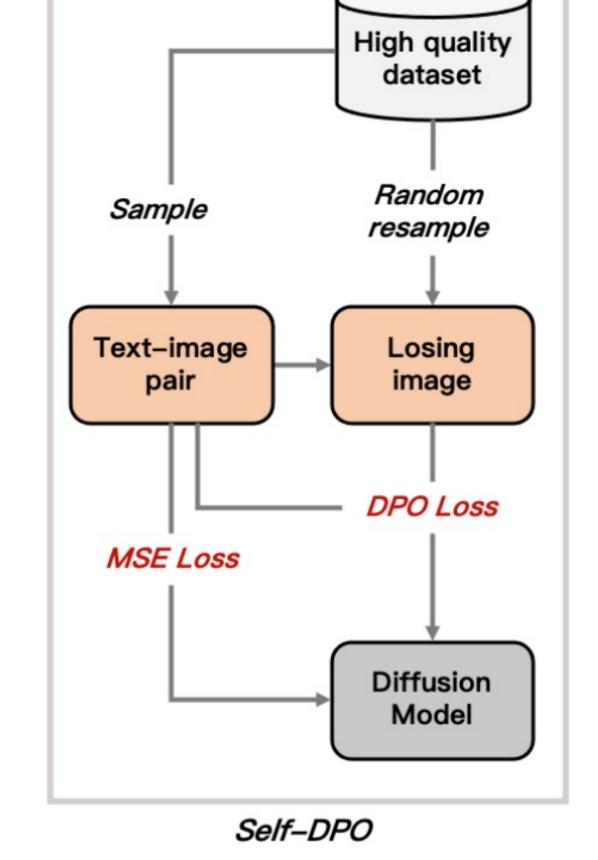
Motivations & Solutions:

- ☐ DPO has shown strong results in aligning text-to-image models with user intent.
- ☐ The practical adoption of DPO is hindered by a costly and rigid training pipeline: it first requires the offline generation of a large set of image candidates, followed by extensive human annotation in the form of pairwise ranking.
- ☐ Instead of requiring external preference data, our method constructs training pairs dynamically using self-supervised image transformations.
- ☐ We identifies a "winning image" that satisfies human-aligned quality criteria, then generate a corresponding "losing image" by intentionally degrading the winner, either through visualquality reductions or text-image misalignment.

Contributions:

- Self-DPO alleviates the need for costly pre-generated images and human ranking efforts, enables scalable and dynamic training, and introduces greater diversity into the preference supervision signal.
- Self-DPO not only matches but surpasses conventional DPO in both qualitative and quantitative metrics. We attribute it to the greater diversity of preferences sampled during training.





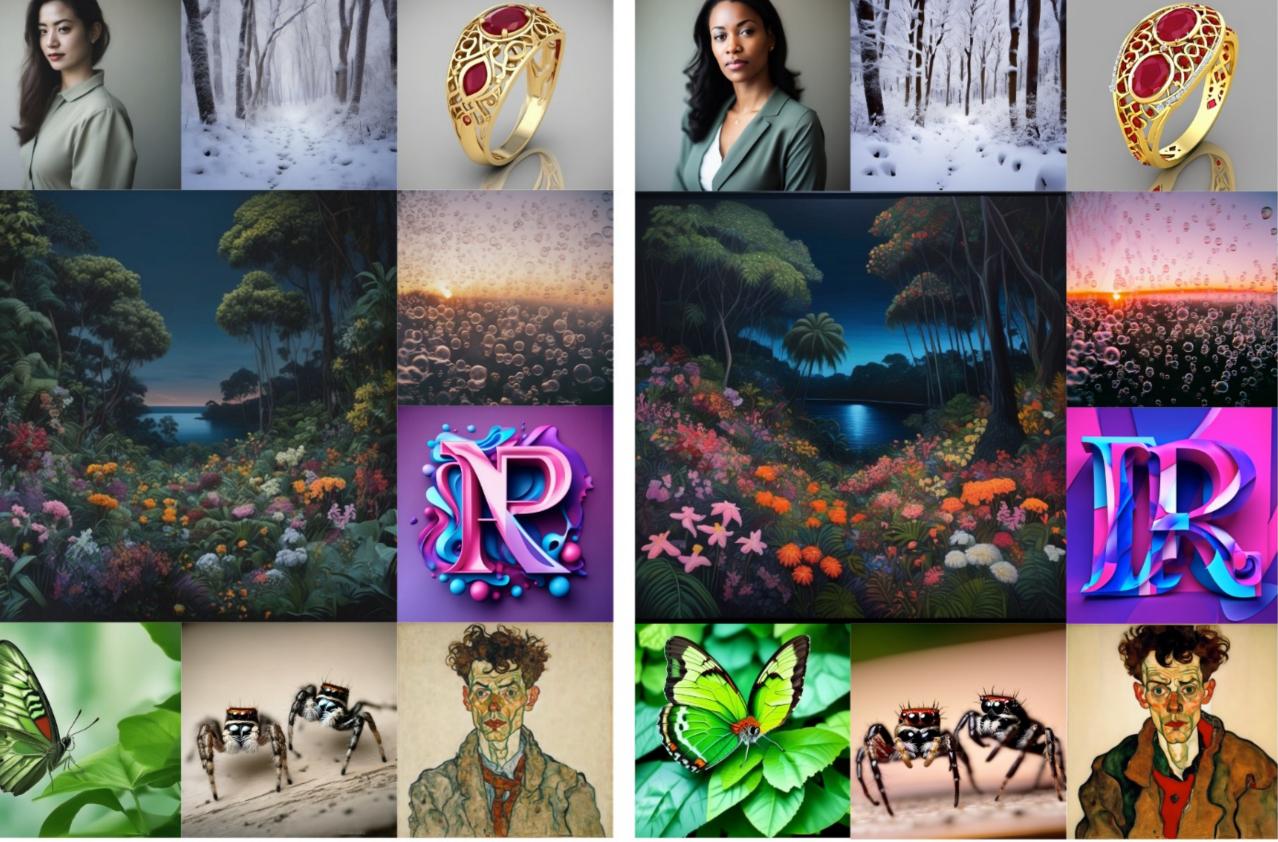
Overview:

We generate the "losing" images self-supervisedly, enabling direct preference optimization without extra collecting and ranking steps. This lightweight procedure eliminates the substantial overhead of conventional DPO while retaining the same data requirements as standard SFT.

$$\mathcal{L}_{\text{Self-DPO}} = -\log \sigma \left(C\left(\left(\|\boldsymbol{\epsilon}_{\theta}(\boldsymbol{x}_{t}^{w},t) - \boldsymbol{\epsilon}^{w}\|_{2}^{2} - \|\boldsymbol{\epsilon}_{\theta}(\boldsymbol{x}_{t}^{sl},t) - \boldsymbol{\epsilon}^{sl}\|_{2}^{2} \right) - \left(\|\boldsymbol{\epsilon}_{\text{ref}}(\boldsymbol{x}_{t}^{w},t) - \boldsymbol{\epsilon}^{w}\|_{2}^{2} - \|\boldsymbol{\epsilon}_{\text{ref}}(\boldsymbol{x}_{t}^{sl},t) - \boldsymbol{\epsilon}^{sl}\|_{2}^{2} \right) \right),$$

$$where \quad \boldsymbol{x}^{sl} = \mathbf{Downgrade}(\boldsymbol{x}^{w})$$

The downgrade operation can be simply performed by randomly selecting images from the training dataset. For each self-generated image pair, the winning sample closely aligns with the prompt, whereas the losing sample fails to correspond to the description.



Datasets	Methods				SD1.5					SDXL		
Datasets			P.S.	Aes.	CLIP	HPS	I.R.	P.S.	Aes.	CLIP	HPS	I.R.
Pick-a-Pic V2	Base SFT DPO Self-DPO	Avg score	20.57 21.10 20.91 21.23	53.15 56.35 54.07 56.35	32.58 33.75 33.19 34.79	26.17 27.03 26.46 27.33	-14.81 45.03 4.13 71.00	22.10 21.48 22.57 22.34	60.01 57.84 59.93 59.97	35.86 35.67 37.30 37.53	26.83 26.67 27.30 27.89	50.62 30.89 81.14 103.96
	SFT DPO Self-DPO	Win rate	75.00 73.80 78.60	77.20 60.00 77.80	60.40 60.00 68.40	90.20 71.80 94.20	80.00 61.00 85.20	19.40 72.60 60.80	31.80 47.20 50.80	47.00 63.00 62.40	44.60 79.80 93.80	42.4 69.8 79.2
PartiPrompts	Base SFT DPO Self-DPO	Avg score	21.39 21.75 21.61 21.84	53.13 55.31 53.58 55.09	33.21 33.93 33.88 35.11	26.79 27.57 26.98 27.84	1.48 50.75 21.43 75.66	22.63 22.02 22.90 22.79	57.69 56.41 57.85 58.69	35.77 35.31 36.95 37.00	27.33 27.13 27.73 28.30	69.78 47.29 103.36 117.50
	SFT DPO Self-DPO	Win rate	67.28 67.10 69.85	70.89 57.17 68.50	53.43 56.74 63.24	85.42 61.83 89.40	73.35 63.05 81.00	21.38 63.42 56.19	38.11 53.62 60.48	45.10 62.32 60.17	43.75 73.10 92.16	40.93 68.44 76.84
HPD V2	Base SFT DPO Self-DPO	Avg score	20.84 21.57 21.30 21.58	54.32 57.41 55.80 57.10	33.96 35.26 34.68 36.30	26.84 27.89 27.22 28.11	-11.79 57.74 13.24 76.13	22.78 22.24 23.18 22.98	61.34 60.08 61.35 61.30	37.68 37.39 38.45 38.35	27.68 27.76 28.14 28.77	78.27 66.62 102.74 110.67
	SFT DPO Self-DPO	Win rate	79.53 75.72 79.53	75.31 66.28 74.03	59.34 57.56 68.47	90.10 72.43 92.49	81.16 64.69 85.19	23.47 72.66 58.78	37.28 50.28 48.06	46.63 58.69 55.65	58.22 80.56 94.97	45.81 69.78 72.50