Mitigating Intra- and Inter-modal Forgetting in Continual Learning of Unified Multimodal Models

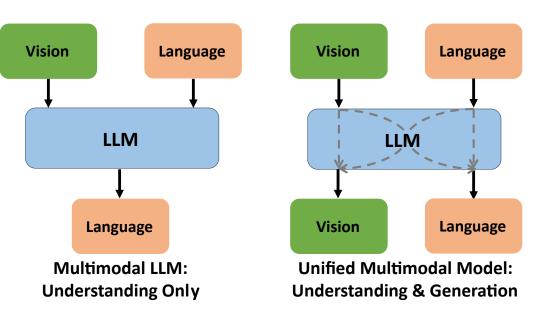
Xiwen Wei, Mustafa Munir, Radu Marculescu

The University of Texas at Austin

Unified Multimodal Models

Unified Multimodal Generative Models (UMGMs)

- Integrate both multimodal understanding and multimodal generation.
- Use a single autoregressive backbone.
- For general-purpose multimodal intelligence.

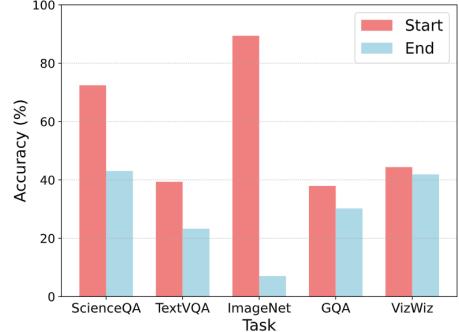


Catastrophic Forgetting in UMGMs

When continually adapted to new tasks, UMGMs suffer from **catastrophic forgetting**, i.e. losing performance on previously learned tasks. We aim to answer:

1. Do UMGMs experience both intra- and inter-modal forgetting during continual instruction tuning?

2. How can we mitigate both simultaneously?



VQA Task #2

VQA Task #3

Intra-modal forgetting: continuously learning new tasks causes forgetting on previous learned tasks.

- When trained sequentially on multiple VQA tasks, performance on earlier ones, like ScienceQA, drops dramatically.
- · Existing continual learning methods mainly target this forgetting.

ScienceQA TextVQA ImageNet Task Prompts: "A photo of a barn" "A photo of a cat" "A photo of a plushie" "A photo of a car" Pre-trained UMGM CLIP: 0.3248 CLIP: 0.3915 CLIP: 0.3082 CLIP: 0.3422 Which of these states is farthest north? A. West Virginia B. Louisiana C. Arizona D. Oklahoma D. Oklahoma CLIP: 0.3067 CLIP: 0.3056 CLIP: 0.3164 CLIP: 0.3289 CLIP: 0.3164 CLIP: 0.3289

CLIP: 0.2540

CLIP: 0.2532

CLIP: 0.2525

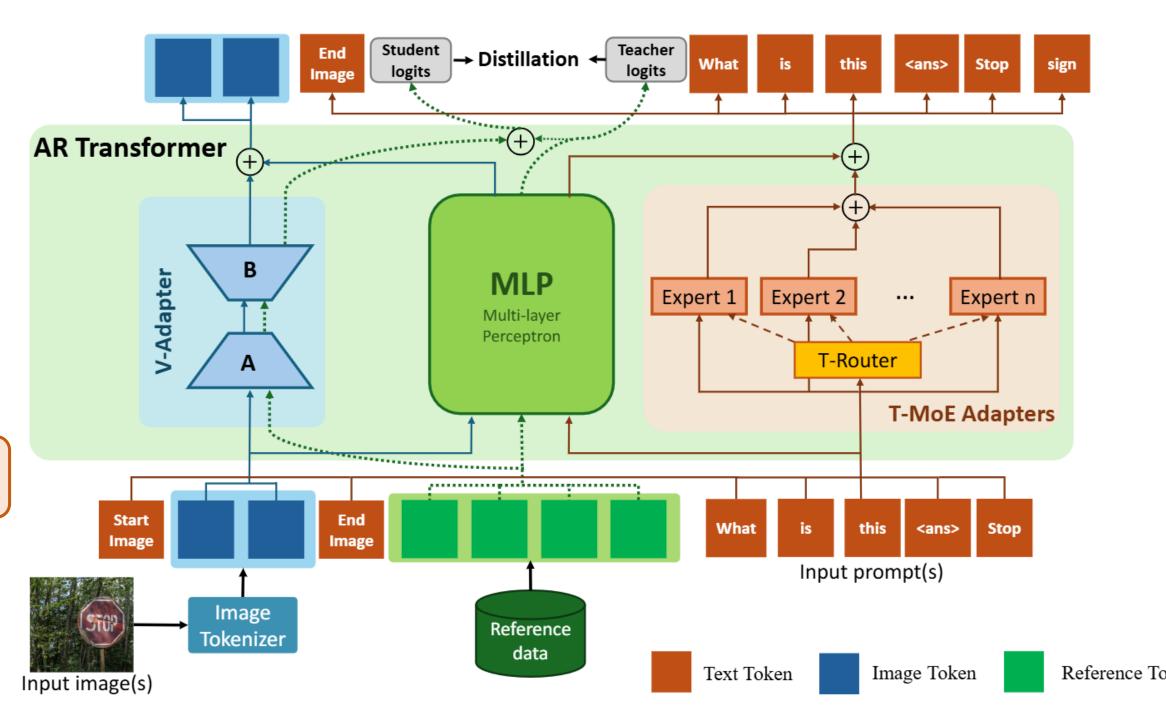
CLIP: 0.1769

Inter-modal forgetting:

improving multimodal understanding degrades multimodal generation quality.

- When trained sequentially on multiple VQA tasks, the visual generation fidelity decreases.
- Underexplored in existing work.

MoDE: Modality-decoupled Experts



Key Components

T-MoE (Text Mixture-of-Experts)

A sparse mixture of LoRA experts dynamically routed per task to reduce intra-modal forgetting in multimodal understanding tasks.

V-Adapter (Visual LoRA Adapter)

A single image adapter regularized via logit-level knowledge distillation from the pre-trained model to prevent inter-modal forgetting and maintain image generation fidelity.

Knowledge distillation (KD)

Teacher: pre-trained model; student: currently training MoDE-adapted model.

To maintain visual generation capability of the pre-trained model.

Training Objectives

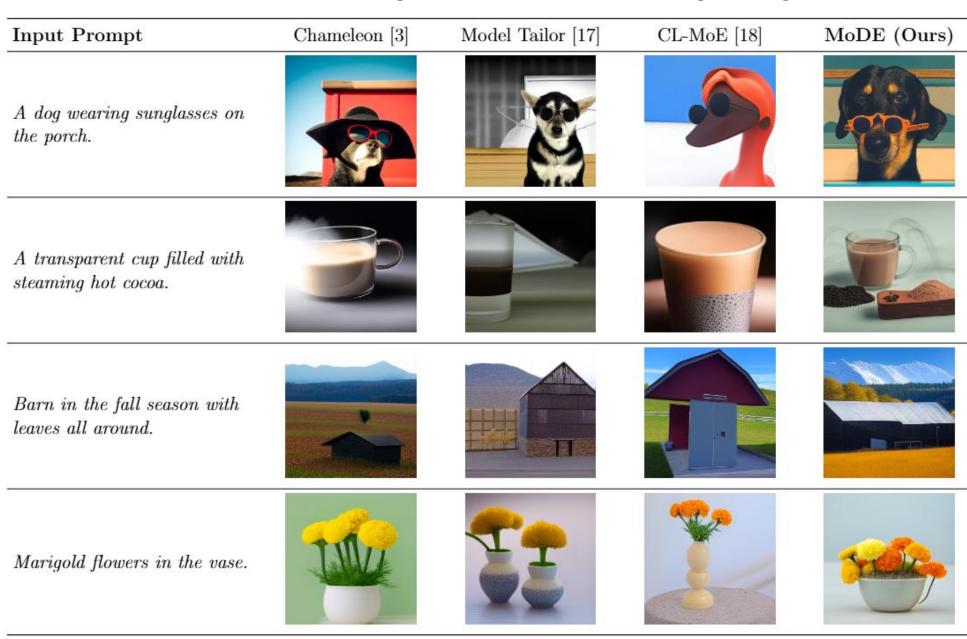
$$L_{total} = L_{T\text{-MoE}} + L_{V\text{-Adapter}} = L_{CE} + \lambda L_{KD}$$

where λ balances instruction-following accuracy and visual generation consistency.

* Only MoDE components are updated; the UMGM backbone remains frozen

Experimental Results

Qualitative results: mitigate inter-modal forgetting



Quantitative results: mitigate intra- and inter-modal forgetting

	Image Generation			Multimodal Understanding		
Method	Text alignment (†)	Image alignment (†)	FID (↓)	Accuracy (†)	Forgetting (\(\psi \))	$\Delta (\downarrow)$
Zero-shot	0.2592	0.5205	52.13	22.48	-	34.84
Seq LoRA	0.2162	0.5150	56.12	28.43	35.33	28.57
Model tailor [17]	0.2384	0.5093	<u>55.47</u>	32.62	27.66	24.70
DualPrompt [16]	0.2648	0.5083	56.08	31.92	6.82	25.40
MoELoRA [44]	0.2248	0.5095	65.16	33.01	30.77	24.31
CL-MoE [18]	0.2081	0.5150	65.87	32.86	30.95	24.46
MoDE (Ours)	0.2458	0.5170	53.74	33.47	<u>25.99</u>	22.78

NEURAL INFORMATION

PROCESSING SYSTEMS

