Emergence and Evolution of Interpretable Concepts in Diffusion Models

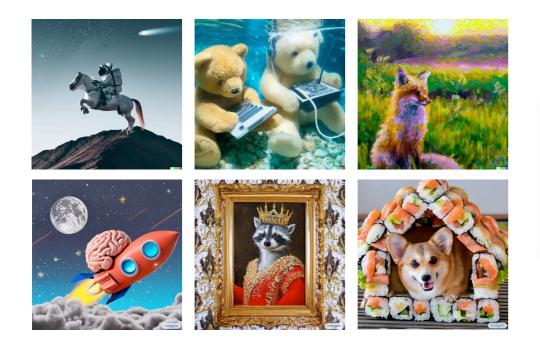
Berk Tinaz* Zalan Fabian* Mahdi Soltanolkotabi

Dept. of Electrical and Computer Engineering
University of Southern California
Los Angeles, CA, USA

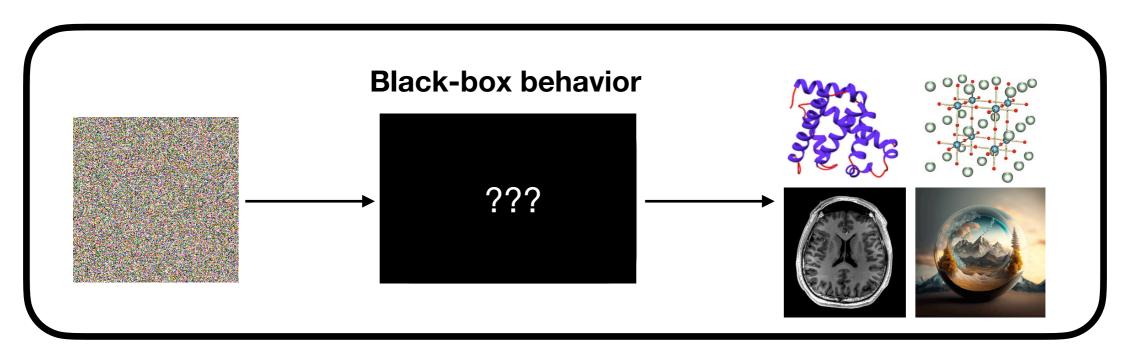
tinaz@usc.edu fabian.zalan@gmail.com soltanol@usc.edu

USC Center on AI Foundations for the Sciences

Interpretable Diffusion



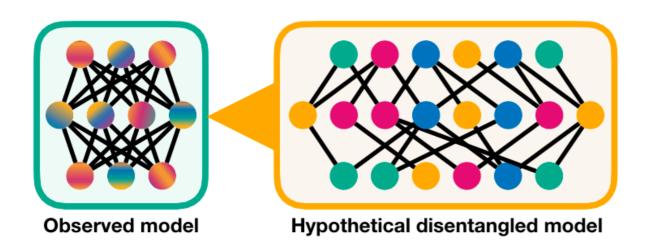
Diffusion models are the **powerhouse** behind modern generative AI.

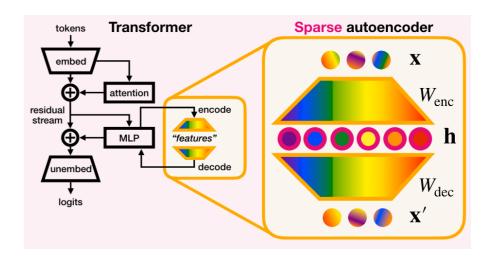


Our understanding of the inner mechanisms of diffusion models remains limited.

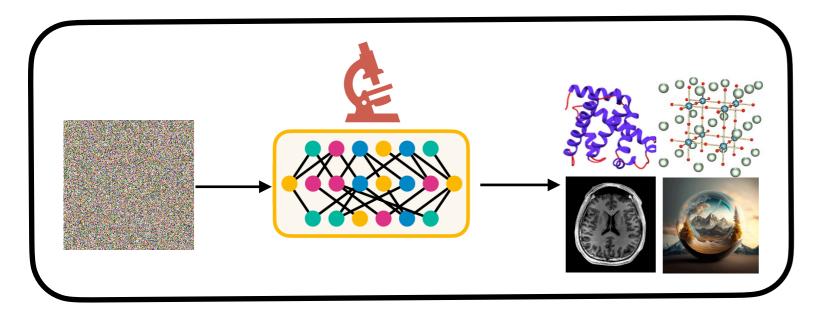
Sparse Autoencoders

Mechanistic interpretability through Sparse Autoencoders (SAEs)





Diffusion models under the lens of SAEs



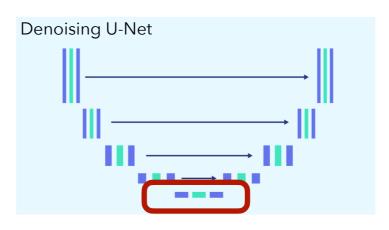
Goals:

- Understand the features diffusion models learn
- 2. <u>Identify</u> causal mechanisms
- 3. Achieve fine-grained <u>control</u> of the generative process

Training Sparse Auto-encoders

Use diverse text prompts and collect activations from the bottleneck layer of **Stable Diffusion v1.4**, at different time steps of the reverse diffusion.

LAION COCO: 600M SYNTHETIC CAPTIONS FROM LAION2B-EN by: Christoph Schuhmann, Andreas Köpf, Richard Vencu, Theo Coombes, Romain Beaumont, 15 Sep, 2022



Training:

Pick top K values, set rest to 0.

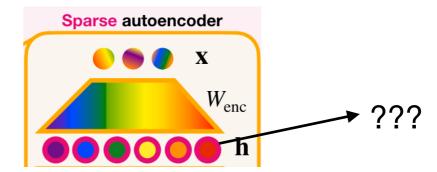
Encoder:
$$oldsymbol{z} = \mathcal{E}_{oldsymbol{ heta}}\left(oldsymbol{x}
ight) = \operatorname{TopK}\left(\operatorname{ReLU}\left(oldsymbol{W}_{enc}\left(oldsymbol{x} - oldsymbol{b}
ight)
ight)
ight)$$

Decoder:
$$\hat{m{x}} = \mathcal{D}_{m{ heta}}\left(m{z}
ight) = m{W}_{dec}m{z} + m{b}$$

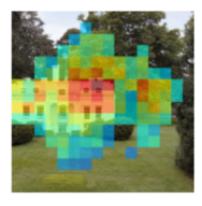
$$\mathcal{L}_{rec}\left(\boldsymbol{\theta}\right) = \left\|\boldsymbol{x} - \hat{\boldsymbol{x}}\right\|_{2}^{2} + \alpha \mathcal{L}_{aux}\left(\boldsymbol{\theta}\right)$$
 Prevent "dead" neurons

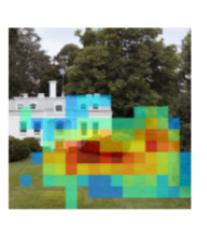
Labeling SAE Features

How to automatically label SAE features?



Assign list of objects to each SAE feature using an open-source image segmentation pipeline!



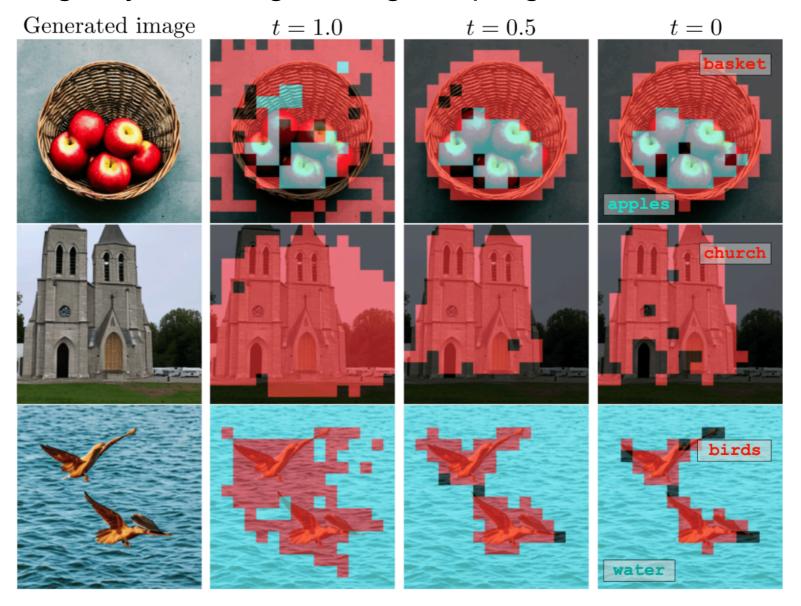


CID: 4657 white house, building

CID: 2577 grass

Semantic Segmentation

When does the image layout emerge during sampling?



We can **predict** the <u>image layout</u> even **before** the first diffusion step is completed and prediction **gets better** as <u>time progresses</u>.

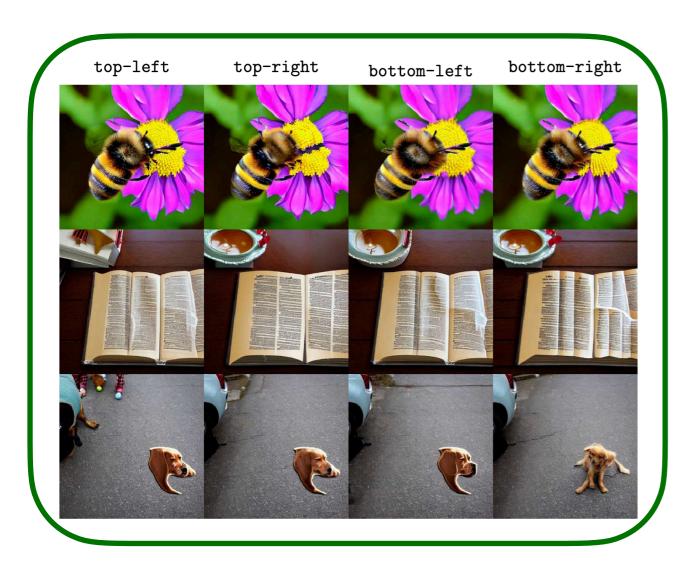
Spatially Targeted Interventions

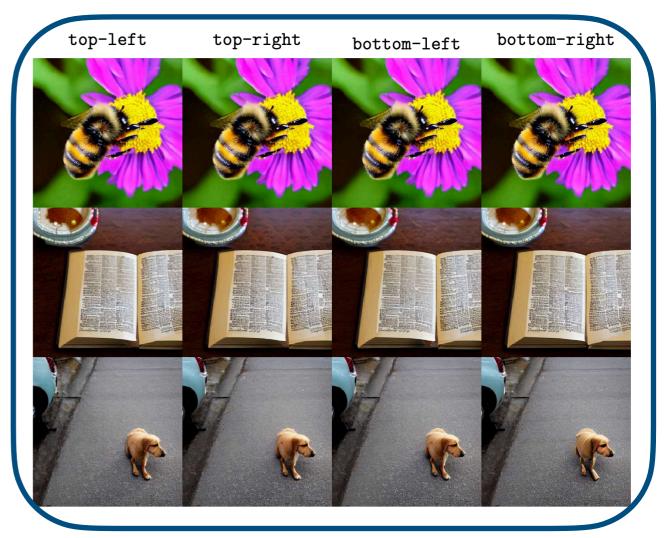
Interventions at

We can **restrict** objects to the specified <u>quadrant</u> of the image when intervened in **early stages**.

Spatially Targeted Interventions

Interventions at





Our interventions are **unsuccessful** in the **middle** and **final** stages of reverse diffusion.

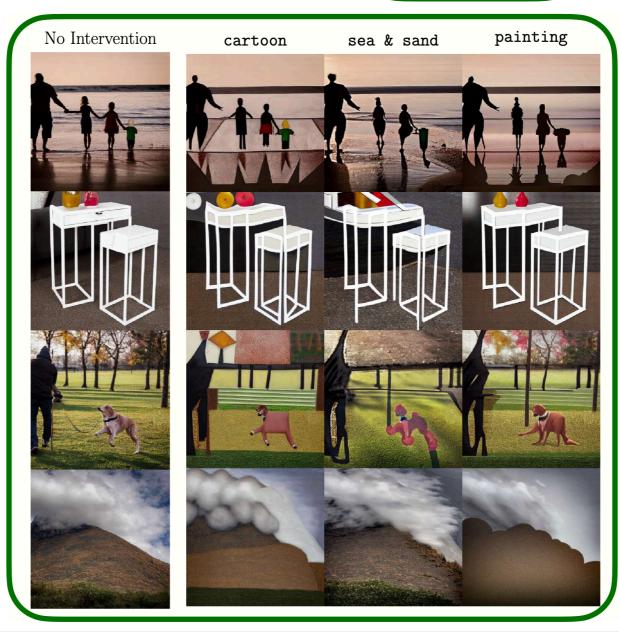
Global Interventions (Early Stage)

Interventions at

Edits in **initial steps** of reverse diffusion drastically modify the **broad composition** of the image.

Global Interventions (Middle Stage)

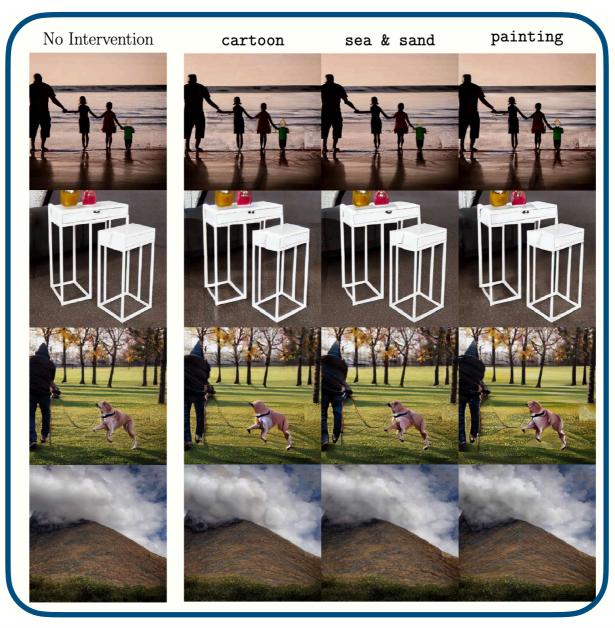
Interventions at



Middle-stage interventions <u>successfully</u> manipulate image style <u>without</u> interfering with image composition.

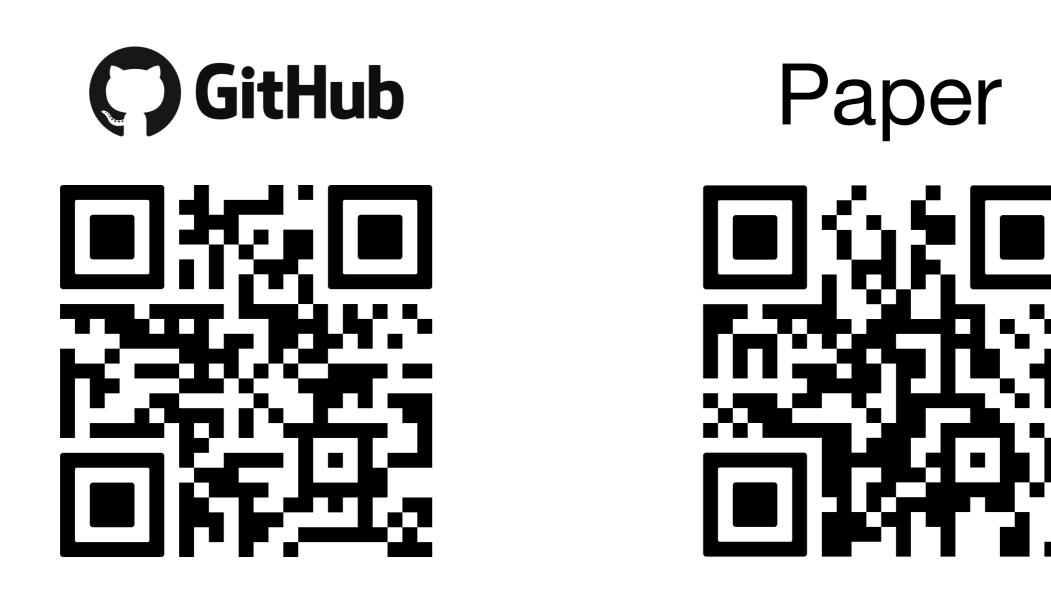
Global Interventions (Final Stage)

Interventions at



Global interventions in the **final** stages have **no effect** on **style** or **composition**, results <u>only</u> in minor textural changes.

Thank you for your attention!



https://github.com/berktinaz/stable-concepts

Contact: tinaz@usc.edu