

Text to Sketch Generation with Multi-Styles

Tengjie Li, Shikui Tu*, Lei Xu*

{765127364, tushikui, leixu}@sjtu.edu.cn

Abstract & Key Contributions

Problem:

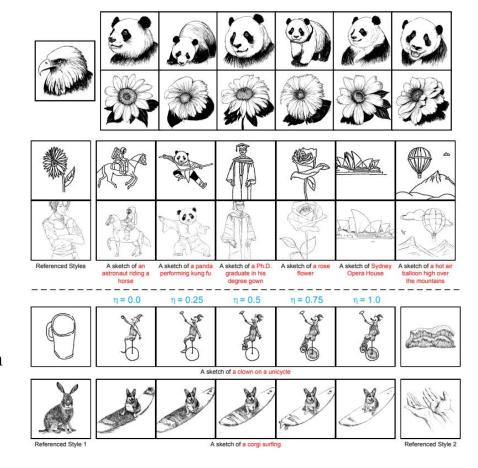
 Existing sketch generation methods lack precise style control mechanisms

Solution:

M3S - Training-free framework based on diffusion models

Key Innovations:

- Reference feature injection with linear smoothing
- Style-content guidance mechanism
- Multi-style fusion via joint AdaIN modulation during denoising process



Introduction & Motivation

Sketching:

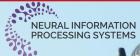
Universal visual medium transcending cultural barriers

Challenges:

- Data acquisition difficulties for high-quality sketches
- Limited style controllability in existing methods
- Domain gap between natural images and sketches

Motivation:

- Zero-shot style transfer to overcome data limitations
- Leveraging pre-trained knowledge of text to image diffusion models

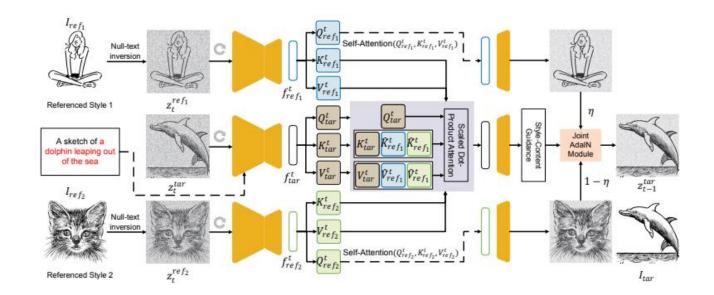


Methodology Overview

Framework: M3S pipeline for single and multi-style generation

Core Components:

- Style feature injection in self-attention layers, linear blending to mitigate content leakage
- Joint AdaIN for style tendency control
- Improved classifier-free guidance for style-content guidance balancing



Feature Injection Mechanism

Previous Limitations: Direct K/V substitution causes content leakage

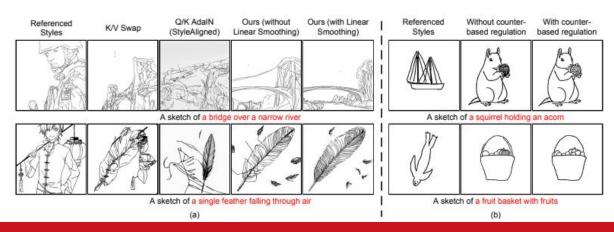
Our Approach: Concatenation strategy with linear smoothing

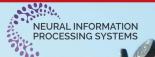
- Vanilla attention: $Attention(Q_{tar}, K_{tar}, V_{tar}) = softmax\left(\frac{Q_{tar}K_{tar}^T}{\sqrt{d}}\right)V_{tar}$.
- M3S single-style sketch generation:

$$Attention(Q_{tar}, \begin{bmatrix} K_{tar} \\ \widehat{K}_{ref1} \end{bmatrix}, \begin{bmatrix} V_{tar} \\ \widehat{V}_{ref1} \end{bmatrix}), \ \ \widehat{K}_{ref1} = \lambda K_{tar} + (1 - \lambda)K_{ref1} \\ \widehat{V}_{ref1} = \lambda V_{tar} + (1 - \lambda)V_{ref1}.$$

• M3S multi-style sketch generation:

$$Attention(Q_{tar}, [K_{tar}, \widehat{K}_{ref1}, \widehat{K}_{ref2}], \big[V_{tar}, \widehat{V}_{ref1}, \widehat{V}_{ref2}\big]).$$





Multi-Style Control and Style-Content Guidance

Multi-Style Control with Joint AdaIN Module:

$$z_t^{tar} = \eta * AdaIN(z_t^{tar}, z_t^{ref1}) + (1 - \eta) * AdaIN(z_t^{tar}, z_t^{ref2})$$

Flexibility: Continuous interpolation between multiple styles

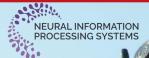
Style-Content Guidance-Dual Control Pathways:

- Content guidance (ω₁): Maintains text alignment
- Style guidance (ω₂): Ensures style consistency

Adaptive Scheduling: ω_2 linearly increases during denoising

Balancing: Optimal trade-off between fidelity and style expression

$$\tilde{\epsilon}_{t} = \epsilon_{\theta}(\mathbf{z}_{t}^{tar}, t, \emptyset) + \omega_{1} \underbrace{\left(\epsilon_{\theta}^{\times}(\mathbf{z}_{t}^{tar}, t, text, K_{ref}, V_{ref}) - \epsilon_{\theta}(\mathbf{z}_{t}^{tar}, t, \emptyset)\right)}_{content \ guidance \ direction} + \omega_{2} \underbrace{\left(\epsilon_{\theta}^{\times}(\mathbf{z}_{t}^{tar}, t, \emptyset, K_{ref}, V_{ref}) - \epsilon_{\theta}(\mathbf{z}_{t}^{tar}, t, \emptyset)\right)}_{style \ guidance \ direction},$$



Experimental Setup

Datasets: 6 diverse sketch styles

- 4 professional sketches dataset from 4SKST dataset
- 1 web-collected dataset
- 1 abstract dataset from Sketch dataset

Evaluation Metrics:

- CLIP-T: Text-sketch alignment
- DINO/VGG: Style consistency
- Human preference assessment

Baselines: StyleAligned, InstantStyle, CSGO, AttentionDistillation, etc.

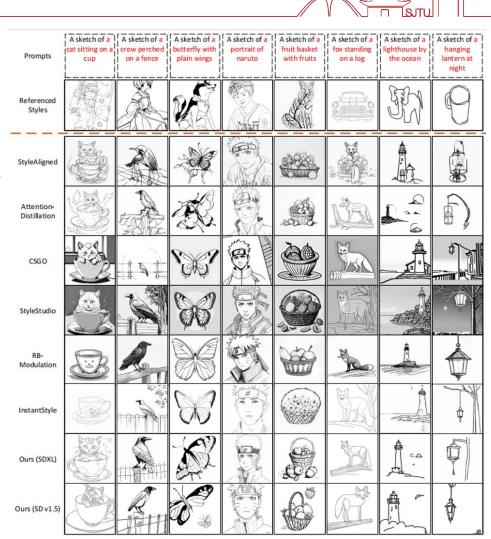
Qualitative Results

Superior Performance:

- M3S achieves better style consistency without content leakage
- Well balance between style consistency and text alignment

Cross-domain Synthesis:

Effective even with structurally divergent references



Multi-Style Generation Examples

Style Fusion:

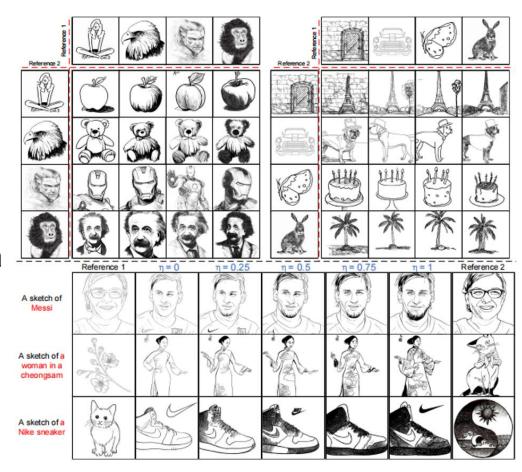
 Combining contour clarity from one reference with texture patterns from another

Controllable Interpolation:

Smooth transition between styles via η parameter

Creative Applications:

Enables novel artistic expressions



Quantitative Analysis

CLIP Scores:

 M3S(SDXL) achieves best text alignment (0.3514)

Style Consistency:

Competitive DINO and VGG metrics

Human Evaluation:

Highest preference ratings (6.19/8.0)

Statistical Significance:

• p-value = 1.06×10^{-5} against strongest baseline

Table 1: Sketch-text alignment and style consistency performance comparison across styles. 'Ours (SDXL*)' denotes that the parameters of our method are set to $\omega_1=7.5, \omega_2=20$, and $\lambda=0.0$.

Method	Style1			Style2			Style3		
Wichiod	CLIP-T(↑)	DINO(†)	VGG(↓)	CLIP-T(↑)	DINO(†)	VGG(↓)	CLIP-T(↑)	DINO(†)	VGG(1)
StyleAligned [12]	0.3130	0.6691	0.0308	0.3095	0.7064	0.0684	0.3013	0.6309	0.0621
AttentionDistillation [63]	0.3305	0.7738	0.0930	0.3320	0.7724	0.0320	0.3225	0.7132	0.0305
CSGO [52]	0.3336	0.5276	0.0571	0.3257	0.5409	0.1370	0.3232	0.5154	0.1018
StyleStudio [21]	0.3395	0.5164	0.1873	0.3351	0.5601	0.1954	0.3349	0.5337	0.1790
RB-Modulation [34]	0.3298	0.3624	0.0592	0.3300	0.3429	0.2085	0.3279	0.3453	0.1733
InstantStyle 48	0.3512	0.4934	0.0417	0.3508	0.4929	0.1577	0.3455	0.4394	0.1321
Ours (SDXL)	0.3607	0.6545	0.0165	0.3556	0.6531	0.0674	0.3422	0.6041	0.0534
Ours (SD v1.5)	0.3507	0.6383	0.0200	0.3452	0.6846	0.0616	0.3416	0.6269	0.0571
Ours (SDXL*)	$0.\bar{3}480$	0.7344	0.0122	0.3340	0.7356	0.0464	0.3319	-0.6870	0.0371
	Style4			Style5			Style6		
	CLIP-T(↑)	DINO(†)	VGG(↓)	CLIP-T(↑)	DINO(↑)	VGG(↓)	CLIP-T(↑)	DINO(↑)	VGG(1)
StyleAligned [12]	0.3137	0.6407	0.0244	0.3004	0.5428	0.0445	0.2879	0.4445	0.0300
AttentionDistillation [63]	0.3222	0.7572	0.0061	0.3377	0.6221	0.0173	0.3289	0.7027	0.0190
CSGO [52]	0.3321	0.5134	0.0526	0.3298	0.4288	0.0972	0.3241	0.5012	0.0716
StyleStudio [21]	0.3402	0.5100	0.1595	0.3377	0.3539	0.1215	0.3338	0.3612	0.1434
RB-Modulation [34]	0.3178	0.3373	0.0465	0.3247	0.3233	0.0972	0.3221	0.2737	0.0780
InstantStyle [48]	0.3513	0.4494	0.0262	0.3480	0.4408	0.0601	0.3417	0.5130	0.0421
Ōurs (SĎXL)	0.3612	0.6493	0.0115	0.3467	0.5332	0.0304	0.3420	$0.\overline{6}9\overline{2}\overline{2}$	0.0259
Ours (SD v1.5)	0.3518	0.6337	0.0136	0.3494	0.5777	0.0272	0.3405	0.7653	0.0170
Ours (SDXL*)	$-\frac{1}{0.3506}$	0.7212	0.0085	0.3383	0.6328	0.0191			

Table 2: The average rating of different methods by the human preference assessment.

	StyleAligned [12]	AttentionDistillation [63]	CSGO [52]	StyleStudio [21]
Rating	<u>2</u> . 7 7	4.28	3.83	4.22
\$10 m 10 ft 10 ft 10 m 10	RB-Modulation [34]	InstantStyle [48]	Ours(SD v1.5)	Ours (SDXL)
Rating	4.20	5.08	<u>5.44</u>	6.19

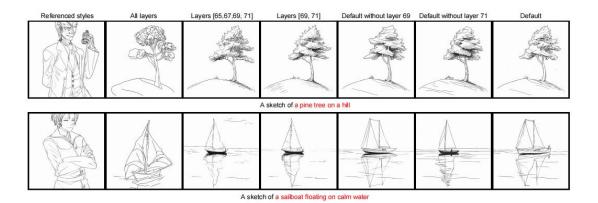
Ablation Studies

Parameter Analysis: λ =0.1 provides optimal balance

Table 3: Multi-style sketch generation performance under different η values.

M3S Imp.	Ref. style	$\eta = 0$			$\eta = 0.25$			$\eta = 0.5$		
		CLIP-T(†)	DINO-ref1(↑)	DINO-ref2(†)	CLIP-T(↑)	DINO-ref1(†)	DINO-ref2(†)	CLIP-T(↑)	DINO-ref1(↑)	DINO-ref2(†)
SDXL	S5-S5	0.3442	0.3936	0.4944	0.3514	0.4180	0.4821	0.3495	0.4408	0.4556
SD v1.5	S5-S5	0.3465	0.3850	0.4776	0.3453	0.4215	0.4597	0.3499	0.4469	0.4509
SDXL	QD-S5	0.3426	0.3051	-0.4724	0.3455	0.3266	0.4622	0.3457	0.3330	0.4397
SD v1.5	QD-S5	0.3434	0.3630	0.4339	0.3417	0.3948	0.4236	0.3452	0.4102	0.4057
		$\eta = 0.75$			$\eta = 1$					
		CLIP-T(↑)	DINO-ref1(↑)	DINO-ref2(†)	CLIP-T(↑)	DINO-ref1(†)	DINO-ref2(†)			
SDXL	S5-S5	0.3499	0.4578	0.4221	0.3470	0.4693	0.3975			
SD v1.5	S5-S5	0.3478	0.4528	0.4257	0.3528	0.4626	0.3825			
SDXL	QD-S5	- 0.3447	0.3409	0.4209	0.3396	0.3617	0.3916			
SD v1.5	QD-S5	0.3440	0.4250	0.3938	0.3468	0.4381	0.3766			

Layer Selection: Strategic feature injection in specific UNet layers (SDXL)



Ablation Studies

Diffrent Control Strength of Syle and Content

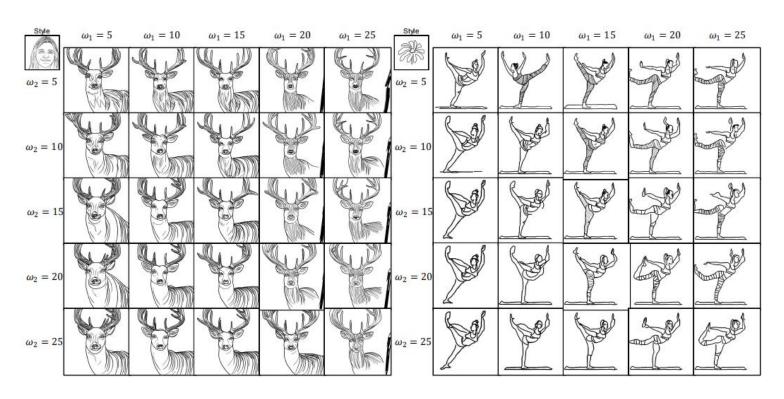


Figure 9: The generated results with different content guidance scale ω_1 and style guidance scale ω_2 . Left: "a sketch of a deer". Right: "a sketch of a person doing yoga".

Limitations & Future Work

Generated

results

Current Limitations:

Challenges with extremely sparse references

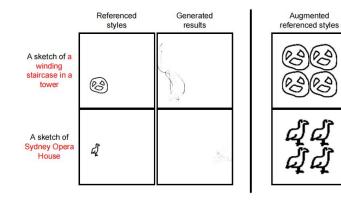


Figure 15: Left: Failure cases of M3S. When the referenced sketches are too small or sparse, M3S is difficult to produce meaningful results. Right: A potential resolution through image augmentation.

Future Directions:

- Localized style control for specific regions
- Enhanced handling of abstract sketches
- Real-time generation optimization

Conclusion & Resources

Summary:

• M3S enables training-free, controllable multi-style sketch generation

Contributions:

• Novel feature injection, adaptive style control, extensive validation

Availability:

Code and models are open-sourced at https://github.com/CMACH508/M3S

Acknowledgement:

Supported by Shanghai Municipal Science and Technology Major Project

