

Mustafar: Promoting Unstructured Sparsity for KV Cache Pruning in LLM Inference

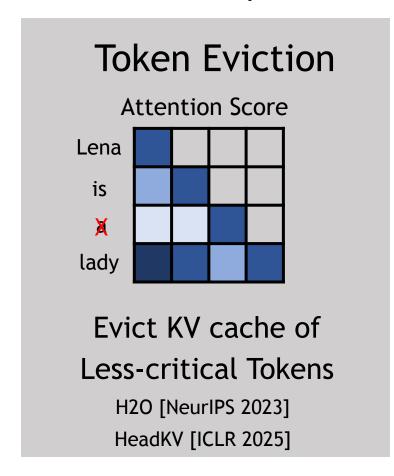
Donghyeon Joo¹, Helya Hosseini¹, Ramyad Hadidi², Bahar Asgari¹

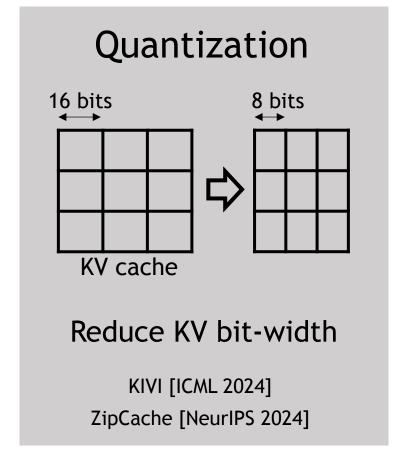
¹University of Maryland, College Park

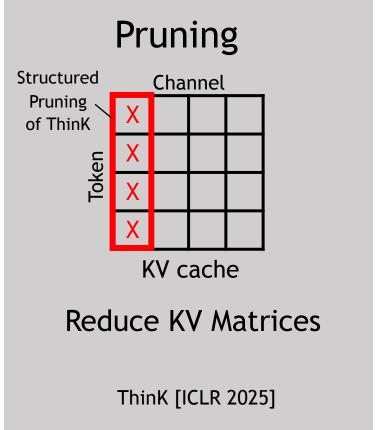
²d-Matrix

KV cache size scales with long-context

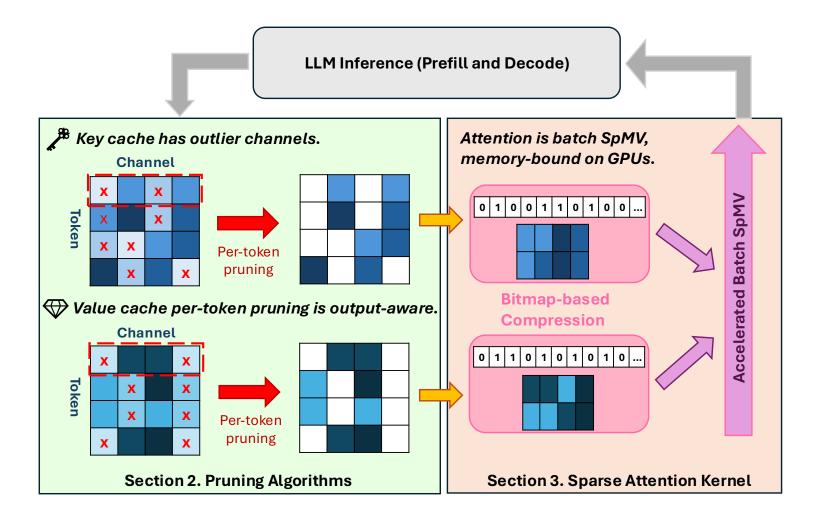
Various KV compression techniques are used:



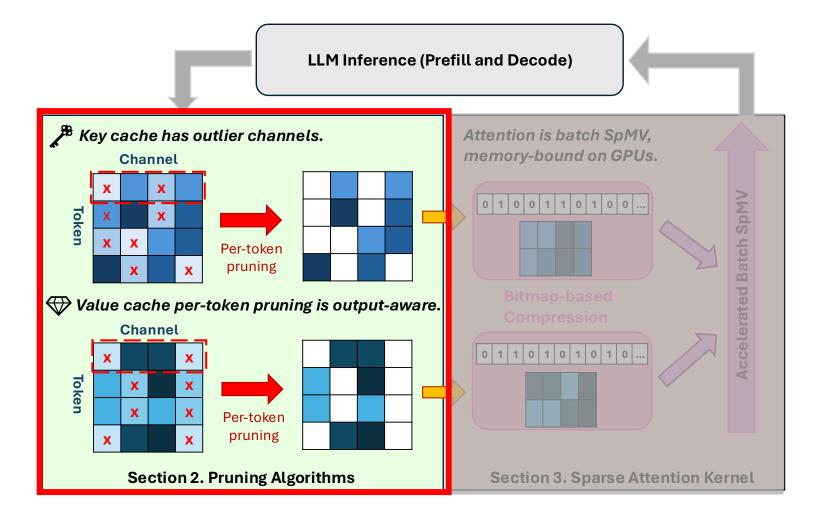




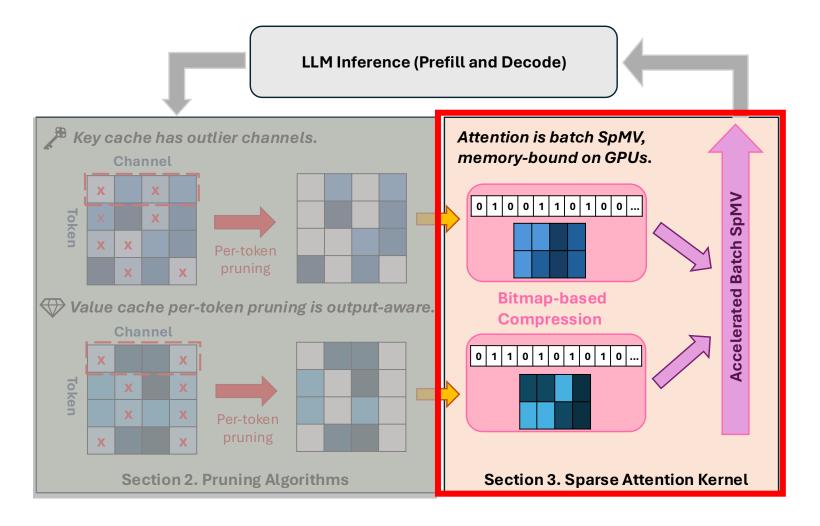
Mustafar Overview



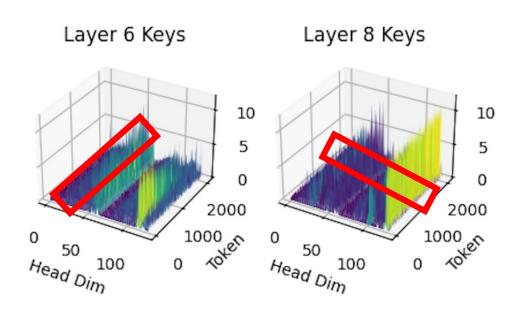
KV Cache Unstructured Pruning



Unstructured Sparse Attention Kernel



Key Cache Observation



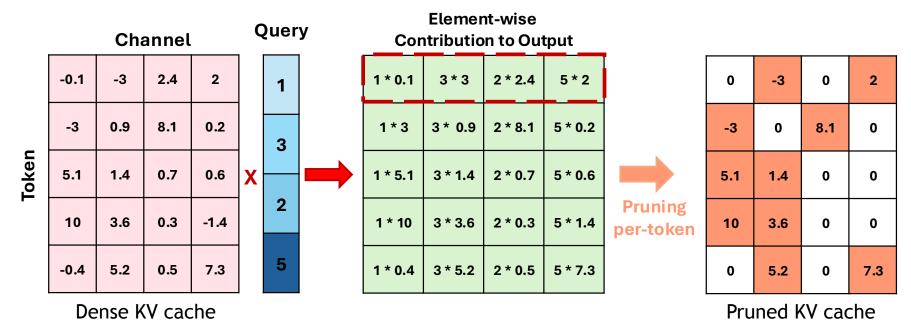
Key Cache Magnitude Distribution

- Key cache shows distinct channel-wise outliers.
- Think applied channel-wise structured pruning.
 - But can unstructured sparsity do better?
- Pruning direction should be per-token.

Visualization credit to KIVI (Liu et al. ICML 2024)

Key Cache Pruning

- Pruning Strategy #1: Magnitude-based pruning
- Pruning Strategy #2: Output-aware pruning



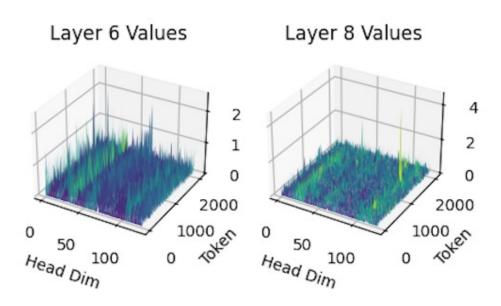
Per-Token Output-aware Pruning

Llama-3-8B-Instruct Accuracy on LongBench

- Think significantly degrades accuracy at 70% sparsity.
- Both unstructured pruning preserves accuracy.
 - Magnitude-based pruning is selected for runtime efficiency.

			$K_s = 0.5$		$K_s = 0.7$				
Task	Dense	ThinK	Unstructured	Unstructured	ThinK	Unstructured	Unstructured		
		(Structured)	Output-aware	Magnitude	(Structured)	Output-aware	Magnitude		
Average	43.19	38.53	43.23	42.84	26.55	42.13	41.55		
SingleDoc QA	36.66	35.61	36.57	36.90	25.26	35.78	35.53		
MultiDoc QA	36.09	34.99	35.92	35.77	29.75	35.55	35.40		
Summarization	26.75	24.96	26.87	26.45	17.70	25.16	25.18		
Few-shot	68.96	66.54	68.82	68.75	44.88	67.22	67.84		
Synthetic	37.25	35.50	37.00	36.75	16.86	35.25	35.00		
Code	55.58	29.56	56.61	54.14	19.15	56.19	51.47		

Value Cache Observation

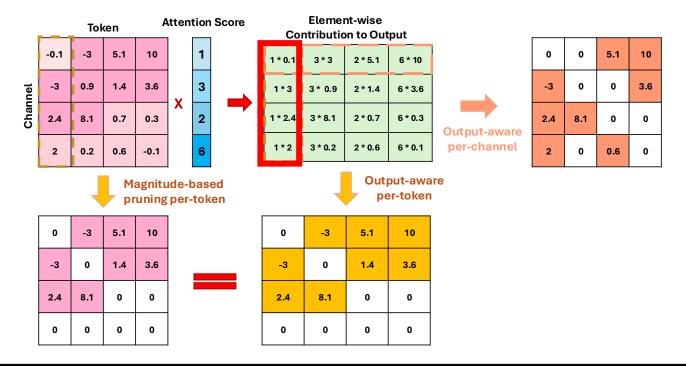


Value Cache Magnitude Distribution

- Value cache exhibits more uniform distribution.
- Think reported to be ineffective.
- Both pruning directions must be explored.

Value Cache Pruning

- Pruning Strategy #1: Per-channel magnitude-based pruning
- Pruning Strategy #2: Per-channel output-aware pruning
- Pruning Strategy #3: Per-token magnitude-based pruning, is already output-aware!



Llama-3-8B-Instruct Accuracy on LongBench

- Think significantly degrades accuracy at 70% sparsity.
- Per-token magnitude-pruning is both effective and efficient.
- Per-token pruning is jointly applicable with token eviction and quantization.

			$V_s =$	0.5		$V_s = 0.7$				
Task	Dense	ThinK	Magnitude	Output-aware	Magnitude	ThinK	Magnitude	Output-aware	Magnitude	
		(Structured)	(Per-channel)	(Per-channel)	(Per-token)	(Structured)	(Per-channel)	(Per-channel)	(Per-token)	
Average	43.19	38.45	42.50	42.84	43.04	30.60	41.69	42.67	42.78	
SingleDoc QA	36.66	34.92	36.56	36.24	36.75	25.05	36.11	36.05	36.96	
MultiDoc QA	36.09	34.74	35.45	36.07	36.22	23.90	35.11	36.20	35.82	
Summarization	26.75	23.31	24.74	25.79	26.34	20.41	22.72	24.75	25.19	
Few-shot	68.96	67.18	67.66	68.65	68.91	60.16	67.39	68.23	68.08	
Synthetic	37.25	35.43	38.31	37.00	36.25	29.63	38.75	37.25	35.50	
Code	55.58	31.97	55.07	55.57	55.77	20.85	52.65	56.17	57.62	

Bitmap-based Sparse Format

- Objective #1: Maximally compress unstructured sparse KV cache
- Compress unstructured sparse KV cache with a bitmap-based sparse format.

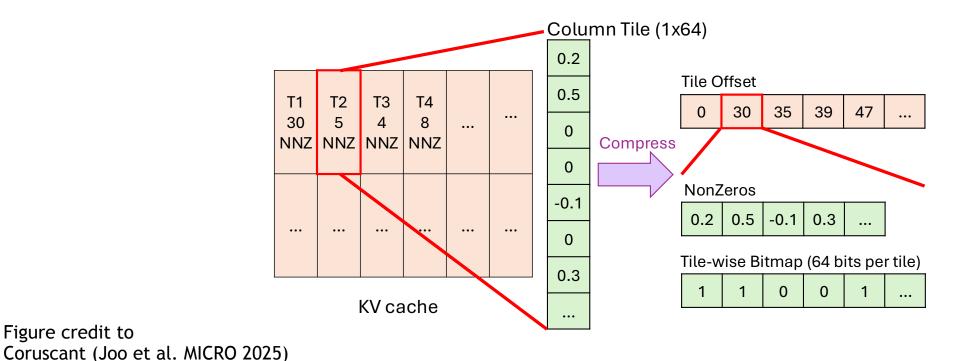


Figure credit to

Load-as-compressed, Compute-as-dense Pipeline

- Objective #2: Accelerate memory-bound decode attention computation
- Load from GPU GMEM to SMEM in compressed form, compute as dense in TC.

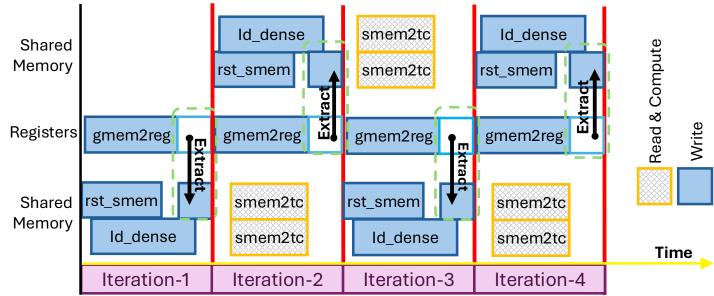
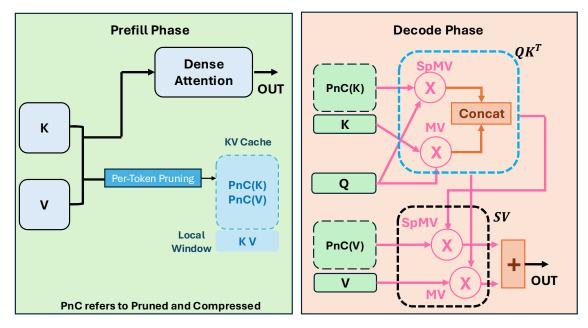


Figure credit to Flash-LLM (Xia et al. VLDB 2023)

Mustafar Sparse Attention Kernel

- KV cache is pruned and compress on-the-fly.
- Decode attention is computed as a combination of sparse attention on compressed cache and dense attention on local dense cache.



*multi-head, softmax, and normalization are omitted for simplicity.

Evaluation Methodology

• System: NVIDIA RTX 6000 ADA GPU

Models:

• Llama-2 7B/13B, Llama-3/3.1-8B-Instruct, Mistral-7B-Instruct-v0.2

Key Metrics:

- Accuracy: LongBench and RULER
- Efficiency: Compression ratio, kernel latency, token throughput, TTFT, decode speed

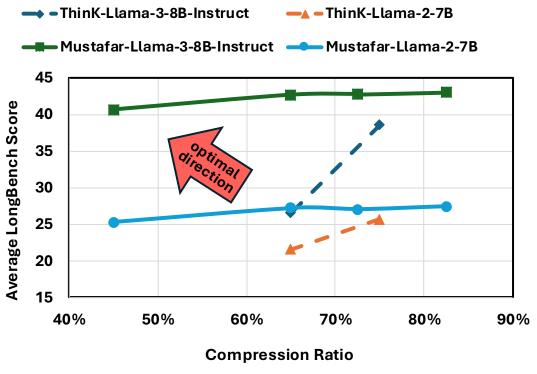
Evaluation: Accuracy

- Mustafar preserves accuracy even when both Key and Value caches are pruned.
- Constantly observed across all models tested.

	Single-	Docume	ent QA	Multi	-Documen	t QA	Sui	mmarizat	tion	Few	-shot Lea	rning	Synt	hetic	Co	ode	
KV Sparsity	AND	Ossper.	Men	Appara Appara	Shipping Shipping	Musique	roge de de	O Spirit	Multiplews	REC	Arivalo	S. A. M. S. Marin	A COUNTY	age.	Çe,	200	Avg.
Llama-3 8B Instruct																	
Dense	23.39	43.38	43.22	46.39	38.66	23.22	29.91	22.56	27.77	74.50	90.28	42.11	4.50	70.00	57.11	54.05	43.19
ThinK0.5	22.38	40.96	43.48	44.01	38.37	22.59	26.61	22.20	26.08	74.00	88.83	36.79	6.00	65.00	27.95	31.17	38.53
K0.5 V0.0	23.40	43.68	43.63	46.00	38.60	22.72	29.39	22.33	27.64	74.50	90.66	41.09	5.00	68.50	55.89	52.39	42.84
ThinK0.7	17.58	27.40	30.80	40.59	29.50	19.16	18.13	17.28	17.70	34.00	83.09	17.56	4.71	29.00	17.88	20.42	26.55
K0.7 V0.0	22.91	42.36	41.33	45.53	38.50	22.16	26.63	21.90	27.00	73.00	90.83	39.68	4.50	65.50	51.94	50.99	41.55
K0.0 V0.5	23.80	43.14	43.32	46.28	39.42	22.97	29.18	22.70	27.13	74.50	90.50	41.74	5.00	67.50	57.23	54.30	43.04
K0.0 V0.7	24.19	42.78	43.92	45.82	39.11	22.53	26.92	22.52	26.12	74.00	90.36	39.88	5.50	65.50	59.18	56.05	42.77
K0.5 V0.5	23.40	46.63	42.98	46.28	39.27	23.13	28.29	22.78	27.07	74.00	90.58	39.97	5.00	67.00	55.54	53.46	42.65
K0.7 V0.7	24.10	40.85	40.88	44.93	38.03	22.36	24.02	21.90	24.78	70.50	90.04	37.77	5.25	63.00	54.12	52.86	40.96

Evaluation: Compression Efficiency

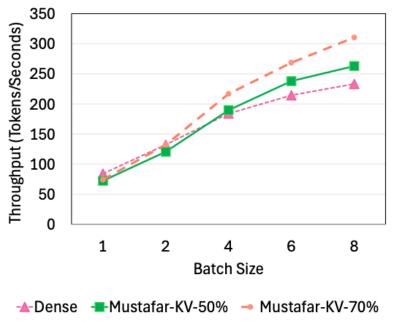
Mustafar achieves higher accuracy with better compression compared to ThinK.



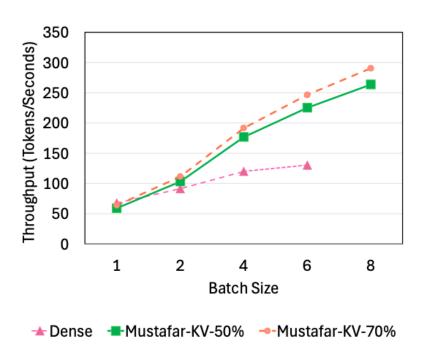
Compression ratio - accuracy comparison

Evaluation: Token Throughput

- Mustafar achieves higher throughput compared to dense with FlashAttention-2.
- KV cache compression allows larger batch size, increasing throughput even more.



Llama-2 7B Throughput



Llama-3 8B Throughput

Thank You

See you at the Session!

Thu 4 Dec 11 a.m. -2 p.m., Exhibit Hall C,D,E

dhjoo98@umd.edu

Paper & Code

This work is supported by National Science Foundation (NSF).

Evaluation: TTFT and Decode Speed

Table 14: Decode speed comparison with dense inference

Model	KV Format	TTFT	Decode Speed (decode 512)	Decode Speed (decode 1024)	Decode Speed (decode 2048)	
Llama2	Dense	1.396 sec	88.685 tokens / sec	88.512 tokens / sec	79.185 tokens / sec	
	Mustafar K0.5 V0.5	2.532 sec	89.452 tokens / sec	89.514 tokens / sec	85.687 tokens / sec	
	Mustafar K0.7 V0.7	2.249 sec	96.386 tokens / sec	97.436 tokens / sec	95.120 tokens / sec	
Llama3	Dense	2.769 sec	61.993 tokens / sec	61.220 tokens / sec	59.242 tokens / sec	
	Mustafar K0.5 V0.5	3.269 sec	78.434 tokens / sec	83.768 tokens / sec	83.303 tokens / sec	
	Mustafar K0.7 V0.7	3.151 sec	84.065 tokens / sec	88.293 tokens / sec	89.699 tokens / sec	

- TTFT is delayed due to prefill KV cache pruning and compression.
- Quickly amortized by accelerated decode.

