Deployment Efficient Reward-Free Exploration with Linear Function Approximation

Zihan Zhang, Lin F. Yang, Yuxin Chen, Jason D. Lee, Simon S. Du, Ruosong Wang

Motivation

- Limitations in deploying a new policy
 - High deployment cost (e.g., clinical trial)
 - Restricted updates (e.g., recommendation system)
- Agnostic/reward-free learning
 - Adaptivity to unstable environment

Problem Settings: RL with linear function approximation

- An Markov Decesion Process (MDP) $<\mathcal{S},\mathcal{A},R,P,H,\mu>$
 - $\mathcal{S} \times \mathcal{A}$: state-action space with feature $\{\phi_h(s,a)\}$
 - R: reward function with mean r
 - P: transition kernel
 - H: planning horizon
 - μ : initial distribution

Problem Settings: RL with linear function approximation

• Linear MDP: unknown kernels $\{\theta_h\}_{h\in[H]}$ and $\{\mu_h\}_{h\in[H]}$

•
$$r_h(s, a) = \langle \phi_h(s, a), \theta_h \rangle$$

•
$$P_h(\cdot \mid s, a) = \langle \phi_h(s, a), \mu_h(\cdot) \rangle$$

Learning with L deployments

Sampling phase:

- For $\ell = 1, 2, ..., L$
 - Compute and execute π^{ℓ} for a certain number of episodes
 - Collect the trajectories and update the whole dataset ${\mathcal D}$

Planning Phase:

- Receive reward kernel $\{\theta_h\}_{h\in[H]}$
- $\text{Given } \{\theta_h\}_{h\in[H]} \text{ and } \mathscr{D} \text{, return a policy } \pi \text{ such that } \mathbb{E}_{s_1\sim\mu}\left[V_1^\pi(s_1)\right] \geq \mathbb{E}_{s_1\sim\mu}\left[V_1^*(s_1)\right] \epsilon$

$$V_h^{\pi}(s) = \mathbb{E}_{\pi} \left[\sum_{h'=h}^{H} r_{h'} | s_h = s \right], \quad V_h^{*}(s) = \max_{\pi} V_h^{\pi}(s)$$

Main Result

• Theorem. For reward-free exploration in linear MDPs, there is an algorithm (Algorithm 1) with deployment complexity H and sample complexity $\operatorname{poly}(d,H,1/\epsilon,\log(1/\delta))$, such that with probability $1-\delta$, for all linear reward functions, the algorithm returns a policy with suboptimality at most ϵ .

Pros:

Depolyment complexity H, where as the lower bound is $\tilde{\Omega}(H)$

Computational efficient algorithm

Does not require coverage assumption

Cons:

Sample complexity of
$$\tilde{O}\left(\frac{d^{15}H^{15}}{\epsilon^5}\right)$$
: bad dependencies on d,H and $\frac{1}{\epsilon}$ $\tilde{O}(\cdot)$ and $\tilde{\Omega}(\cdot)$ hides the log factors

High-level Intuitions

- Layer-by-layer approach
 - Construct the dataset from layer 1 to layer H
- Dealing with the infrequent directions with truncation
 - Rescale the infrequent feature ϕ such that $\mathbb{E}[\phi^{\top}\Lambda^{-1}\phi]$ is well bounded
- Independent copies to decouple the statistics

 Λ : the information matrix

Future Directions

Improving the polynomial dependencies

Extending the results to general function approximation