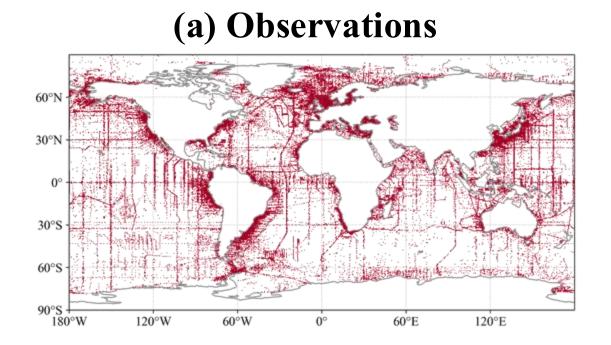
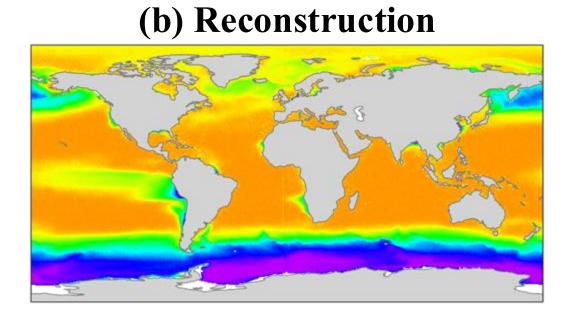


NUTS: Eddy-Robust Reconstruction of Surface Ocean Nutrients via Two-Scale Modeling

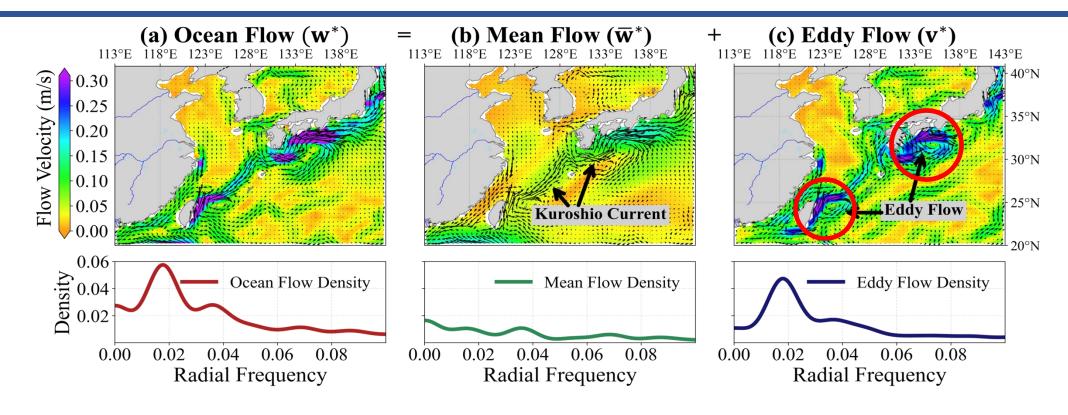
Hao Zheng^{1*} Shiyu Liang^{1*} Yuting Zheng¹ Chaofan Sun¹ Lei Bai² Enhui Liao¹

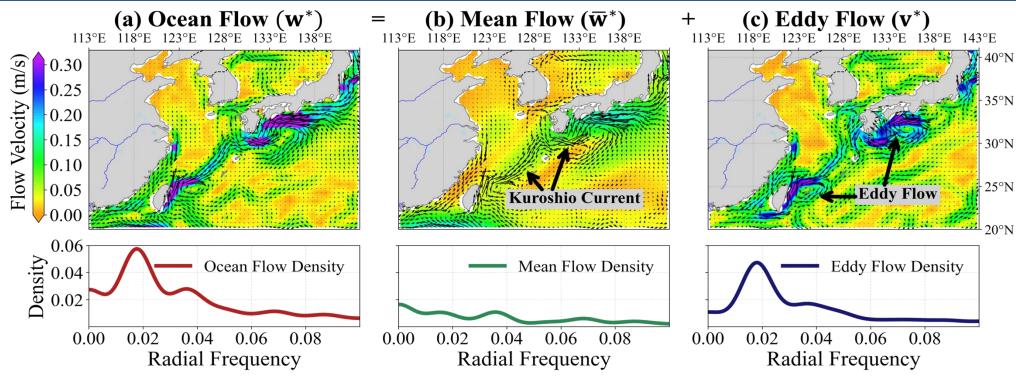

{hubert.zheng, lsy18602808513, zhengyt058, scf024, ehliao}@sjtu.edu.cn,


baisanshi@gmail.com

¹Shanghai Jiao Tong University, China

²Shanghai Artificial Intelligence Laboratory, China


Introduction—Ocean Nutrient Reconstruction


Ocean nutrient reconstruction aims to reconstruct nutrient concentration distribution based on *sparse* and *irregular* observations collected from shipbased campaigns.

Introduction—Challenge

Two-Scale Structure of Ocean flow. Ocean flow consists of *mean flow* and *eddy flow*. Small errors in the eddies propagate through time and distort nutrient reconstruction.

Introduction—Challenge

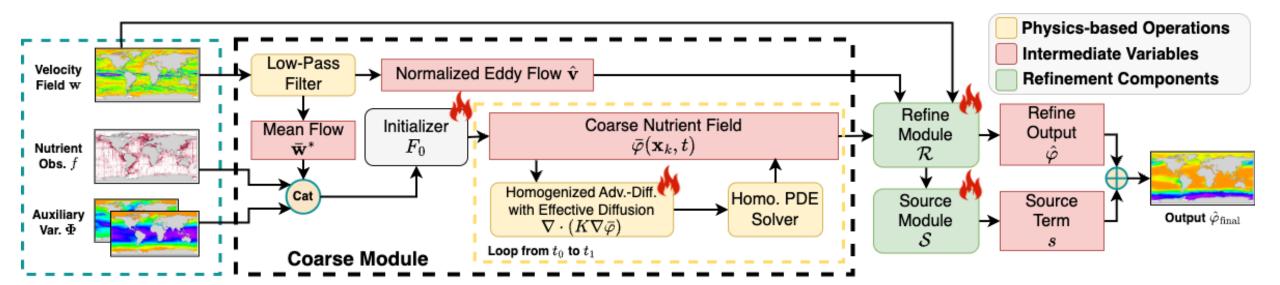
Modeling Dilemma

Filtering out the high-frequency eddies?

Stabilizes nutrients reconstruction process at the cost of removing fine-scale structures.

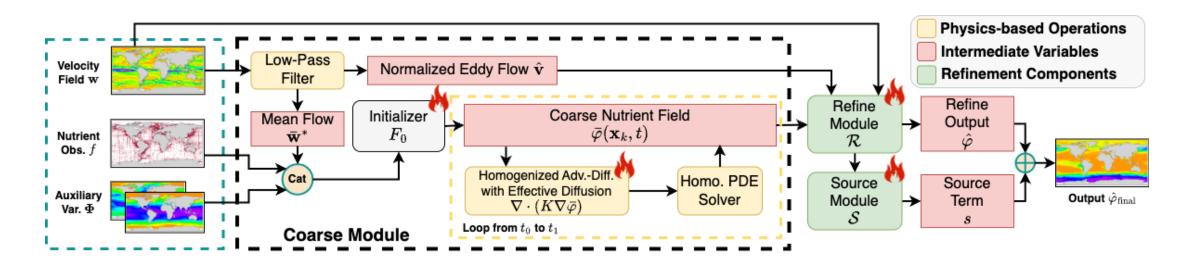
Retaining all flow components?

Keeps the integrity of ocean flow structures at the cost of introducing eddy-caused instabilities.


Methodology

Our Scheme

Utilizing the structured decomposition of ocean flow.

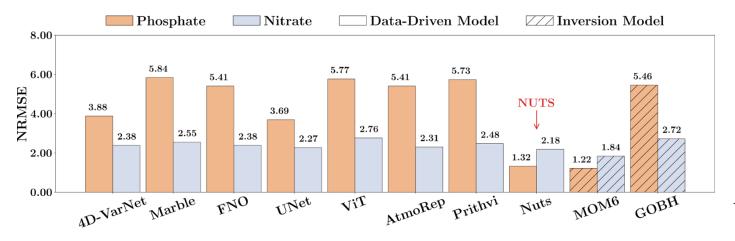

Resolves mean flow and eddy flow via coarse and refinement module, respectively.

Structure of NUTS. A coarse-to-refined architecture that approaches the reconstruction problem via two-scale modeling scheme.

Methodology—Ensuring Physical Consistency

Source Module. We introduce a learnable correction term to account for source-sink dynamics. $s = S(\hat{\varphi}), \quad \hat{\varphi}_{\text{final}} = \hat{\varphi} + s$

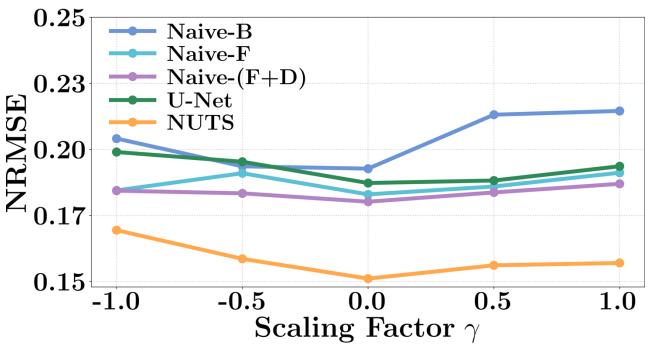
Mass Conservation Loss. We penalize the mass shift between refinement and coarse outputs, as well as the coarse outputs within a reconstruction interval.


M denote the total nutrient mass.

$$\mathcal{L}_{\text{cons.}} = \int_{t_0}^{t_1} |M[\bar{\varphi}](\tau) - M[\bar{\varphi}](t_0)|^2 + |M[\hat{\varphi}](\tau) - M[\bar{\varphi}](t_0)|^2 d\tau$$

Experiments—Main Results

Methods	Params	MOM6 (Daily)						WOD (Monthy)	
		Phosphate			Nitrate			Phosphate	Nitrate
		0.1%	1%	10%	0.1%	1%	10%	_	_
Kriging(Exp.)	_	$0.535_{\pm 0.022}$	0.262 _{±0.015}	$0.184_{\pm 0.023}$	$0.642_{\pm 0.020}$	$0.368_{\pm 0.025}$	$0.256_{\pm 0.019}$	1.275 _{±0.130}	1.495 _{±0.09}
Kriging(Sph.)	_	$0.537_{\pm 0.019}$	0.276 ± 0.022	0.192 ± 0.020	0.649 ± 0.017	0.399 ± 0.018	$0.272_{\pm 0.021}$	$1.270_{\pm 0.086}$	$1.517_{\pm 0.05}$
4D-VarNet	0.3M	$0.151_{\pm 0.008}$	0.154 ± 0.012	0.156 ± 0.010	$0.168_{\pm 0.006}$	$0.170_{\pm 0.007}$	$0.161_{\pm 0.008}$	$0.187_{\pm 0.008}$	$0.203_{\pm 0.00}$
Marble	0.6M	$0.397_{\pm 0.051}$	$0.227_{\pm 0.044}$	0.232 ± 0.069	$0.441_{\pm 0.078}$	$0.222_{\pm 0.044}$	$0.297_{\pm 0.047}$	$0.363_{\pm 0.058}$	0.326 ± 0.05
FNO	4.8M				$0.261_{\pm 0.012}$				
U-Net	31.0M	$0.151_{\pm 0.008}$	0.148 ± 0.013	0.149 ± 0.011	0.169 ± 0.007	$0.166_{\pm0.012}$	$0.167_{\pm0.013}$	$0.174_{\pm 0.012}$	$0.187_{\pm 0.00}$
ViT	77.7M	0.257 ± 0.032	0.242 ± 0.044	0.359 ± 0.048	0.311 ± 0.046	0.256 ± 0.044	0.256 ± 0.052	0.263 ± 0.034	0.260 ± 0.00
AtmoRep	0.7B	$0.196_{\pm0.010}$	0.194 ± 0.011	0.192 ± 0.010	$0.190_{\pm0.009}$	$0.219_{\pm 0.011}$	0.218 ± 0.013	$0.206_{\pm0.013}$	$0.260_{\pm 0.01}$
Prithvi	2.3B				$0.279 {\scriptstyle \pm 0.049}$				
NUTS	125.6M	$0.014_{\pm 0.002}$	$0.015_{\pm 0.001}$	0.022 ± 0.002	0.143±0.003	0.136±0.003	0.142 ± 0.004	$0.035_{\pm 0.002}$	0.151±0.00
Promotion	-	90.7%	89.9%	85.2%	14.9%	18.1%	11.8%	79.9%	19.3%


On simulation datasets, our NUTS reduces NRMSE by 79.9% for phosphate and 19.3% for nitrate compared to the best data-driven baseline.

On real observation dataset, our NUTS outperforms data-driven baselines while matching the performance of inversion models.

Experiments—Component Analysis

We introduced additional perturbations to the ocean flow, the magnitude of which is set to γ times that of the eddy flow.

Variants	Params Count	Low-pass Filter	Effective Diffusion	
Naive-B	131.9M	×	×	×
Naive-F	131.9M	✓	×	×
Naive-(F+D)	131.7M	✓	✓	×
NUTS	125.6M	✓	✓	\checkmark

NUTS achieves both accuracy and robustness under varying perturbation levels γ .

Conclusion and Broader Impact

Combining coarse advection-diffusion dynamics and data-driven refinement enables NUTS to conduct precise ocean nutrient reconstruction, achieving SOTA performance on simulated and real observation datasets.

Methods	MC)M6	WOD		
	Temp.	Sal.	Temp.	Sal.	
U-Net	0.148	0.021	0.111	0.009	
ViT	0.225	0.023	0.143	0.017	
NUTS	0.129	0.017	0.084	0.008	
Promotion	12.8%	19.0%	24.3 %	11.1%	

Extensibility of NUTS.

NUTS is extensible to reconstructing passive tracers governed by the advection-diffusion equation.

Thank You

Github Link: https://github.com/Leamonz/NUTS