Fractional Langevin Dynamics for Combinatorial Optimization via Polynomial-Time Escape

Shiyue Wang⁺, Ziao Guo⁺, Changhong Lu, Junchi Yan^{*}

Abstract

Langevin dynamics (LD) and its discrete proposal have been widely applied in the field of Combinatorial Optimization (CO). Both sampling-based and data-driven approaches have benefited significantly from these methods. However, LD's reliance on Gaussian noise limits its ability to escape narrow local optima, requires costly parallel chains, and performs poorly in rugged landscapes or with non-strict constraints. These challenges have impeded the development of more advanced approaches. To address these issues, we introduce **fractional** Langevin dynamics (FLD) for CO, replacing Gaussian noise with α -stable Lévy noise. FLD can escape from local optima more readily via Lévy flights, and in multiple-peak CO problems with high potential barriers it exhibits a polynomial escape time that outperforms the exponential escape time of LD. Moreover, FLD coincides with LD when α =2, and by tuning α it can be adapted to a wider range of complex scenarios in the CO field. We provide theoretical proof that our method offers enhanced exploration capabilities and improved convergence. Experimental results on the Maximum Independent Set, Maximum Clique, and Maximum Cut problems demonstrate that incorporating FLD advances both sampling-based and data-driven approaches, achieving state-of-the-art (SOTA) performance in most of the experiments.

Contributions

- We incorporate **symmetric** α -stable ($S\alpha S$) noise with truncation into FLD: unlike Gaussian perturbations, enabling instantaneous energy-barrier leaps that facilitate escape from local minima.
- We propose the $S\alpha S$ -noise FLD sampling process and present both **explicit-and implicit-gradient formulations** to advance both sampling-based and data-driven approaches.
- We adopt the mean escape time as our convergence metric, and derive theoretical upper bounds in the discrete setting, showing a polynomial-time bound for FLD versus an exponential bound for LD.
- Our methods outperform existing sampling-based and data-driven methods.

Sampling

Theorem 3. Let γ be uniformly distributed on $(-\frac{\pi}{2}, \frac{\pi}{2})$ and W be an independent exponential random variable with mean 1. The $S\alpha S$ sampling is:

$$Z = \begin{cases} \frac{\sin \alpha \gamma}{(\cos \gamma)^{1/\alpha}} \left(\frac{\cos(\gamma - \alpha \gamma)}{W} \right)^{(1-\alpha)/\alpha} \triangleq \mathcal{S}\alpha \mathcal{S}(1), \ \alpha \neq 1 \\ \frac{\pi}{2} \tan \gamma \triangleq \mathcal{S}1 \mathcal{S}(1), \ \alpha = 1 \end{cases}$$
(18)

$$x_{n+1} = x_n - \frac{\eta_{n+1} c_{\alpha}}{\tau} \nabla H(x) + \eta_{n+1}^{1/\alpha} z_{n+1}$$
(19)

Convergency

LD:

FLD:

$$\lambda_1 \ge \frac{(\Phi_2(\mathcal{B}))}{2}$$

$$\lambda_1^{lpha} \geq C_{N,lpha} \Phi_{lpha}(\mathcal{B}) = rac{lpha 2^{lpha - 1} \Gamma(rac{N + lpha}{2})}{\pi^{N/2} \Gamma(1 - rac{lpha}{2})} \Phi_{lpha}(\mathcal{B})$$

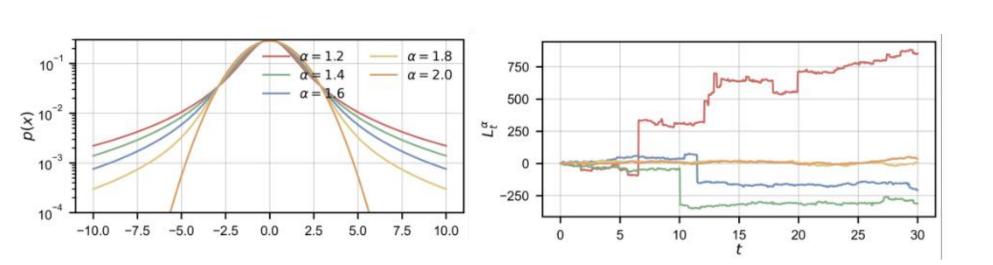
Results

Table 1: Results of compared methods for MIS problem.

MIS		RB-[200-300]		RB-[800-1200]		ER-[700-800]		ER-[9000-11000]	
Method	Type	Size ↑	Time ↓	Size ↑	Time ↓	Size ↑	Time ↓	Size ↑	Time ↓
Gurobi	OR	19.98	47.57 m	40.90	2.17 h	41.38	50.00 m	_	_
KaMIS	OR	20.10	1.40 h	43.15	2.05 h	44.87	52.13 m	381.31	7.60 h
DGL	SL	17.36	12.78 m	34.50	23.90 m	37.26	22.71 m		
INTEL	SL	18.47	13.07 m	34.47	$20.28 \mathrm{m}$	34.86	$6.06\mathrm{m}$	284.63	$5.02 \mathrm{m}$
DIFUSCO	SL	18.52	16.05 m		12	41.12	26.67 m	_	2 3
LTFT	UL	19.18	32 s	37.48	4.37 m		2 <u>15 (1</u> 5	<u> </u>	<u></u>
DiffUCO	UL	19.24	54 s	38.87	4.95 m		_		
SDDS	UL	19.62	20 s	39.99	6.35 m			· ·	 .
PPO	RL	19.01	1.28 m	32.32	7.55 m	<u> </u>	2 <u>15 (1</u> 2	<u> 2</u>	
DIMES	RL		() ——— ()		e 	42.06	12.01 m	332.80	12.72 m
RLNN	PRL	19.52	1.64 m	38.46	6.24 m	43.34	1.37 m	363.34	11.76 m
iSCO	H	19.29	2.71 m	36.96	11.26 m	42.18	1.45 m	365.37	1.10 h
RLSA	H	19.97	35 s	40.19	1.85 m	44.10	20 s	375.31	1.66 m
FLD-IG	PRL	19.72	1.08 m	39.56	6.31 m	43.50	1.35 m	365.03	11.41 m
FLD-EG	H	20.02	38 s	40.25	1.93 m	44.37	19 s	377.50	1.12 m

Table 2: Results of compared methods for MaxCl and MaxCut problems.

MaxCl		RB-[200-300]		RB-[800-1200]		MaxCut		BA-[200-300]		BA-[800-1200]	
Method	Type	Size ↑	Time ↓	Size ↑	Time ↓	Method	Type	Size ↑	Time ↓	Size ↑	Time ↓
Gurobi	OR	19.05	1.92 m	33.89	19.67 m	Gurobi	OR	730.87	8.50 m	2944.38	1.28 h
ERDOES	UL	12.02	41 s	25.43	2.27 m	ERDOES	UL	693.45	46 s	2870.34	2.82 m
LTFT	UL	16.24	42 s	31.42	4.83 m	LTFT	UL	704.30	2.95 m	2864.61	21.33 m
DiffUCO	UL	16.22	$1.00\mathrm{m}$	<u></u> 8	7 	DiffUCO	UL	727.32	1.00 m	2947.53	$3.78 \mathrm{m}$
SDDS	UL	18.90	38 s		_	SDDS	UL	731.93	14 s	2971.62	1.08 m
RLNN	PRL	18.13	1.36 m	35.23	$7.83 \mathrm{m}$	RLNN	PRL	729.00	1.58 m	2907.18	3.67 m
Greedy	H	13.53	25 s	26.71	25 s	Greedy	H	688.31	13 s	2786.00	$3.12 \mathrm{m}$
MFA	H	14.82	27 s	27.94	$2.32 \mathrm{m}$	MFA	H	704.03	1.60 m	2833.86	$7.27 \mathrm{m}$
iSCO	H	18.96	54 s	40.35	11.37 m	iSCO	H	728.24	1.67 m	2919.97	4.18 m
RLSA	H	18.97	23 s	40.53	1.27 m	RLSA	H	733.54	27 s	2955.81	1.45 m
FLD-IG	PRL	18.52	1.40 m	37.40	6.89 m	FLD-IG	PRL	733.48	1.57 m	2922.54	3.07 m
FLD-EG	H	18.97	20 s	40.63	1.91 m	FLD-EG	H	734.18	25 s	2960.13	1.70 m



Pdf of $S\alpha S$ Distribution

Ablation Study

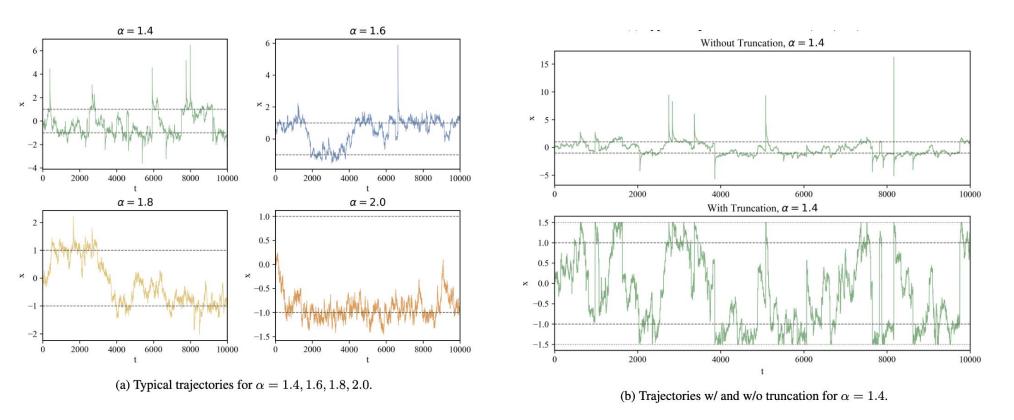


Figure 2: Sampling trajectories of the FLD-based SDE.

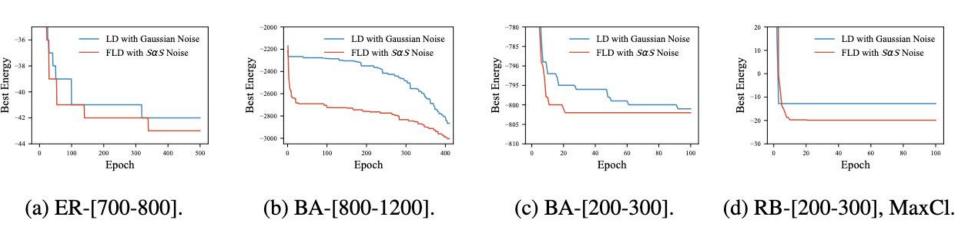


Figure 3: Ablation for our methods (FLD with $S\alpha S$) and LD sampling process method with Gaussian noise. The staircase curves show how the "Best Energy" evolves as the number of iterations ("epochs"), where the "Best Energy" is the minimum energy function value between last and current epoch.