

SCENEFORGE: Enhancing 3D-text alignment with Structured Scene Compositions

Cristian Sbrolli, Matteo Matteucci

Artificial Intelligence and Robotics Lab Department of Electronics, Information and Bioengineering Politecnico di Milano

Introduction

The 3D Data Scarcity Problem

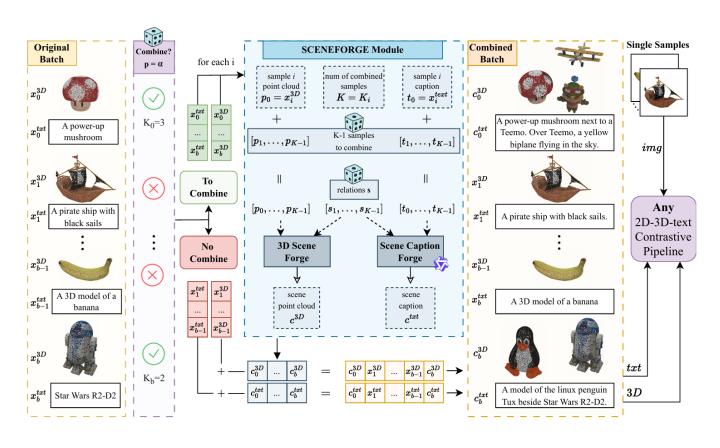
- Large-scale contrastive models work well by learning from billions of (image, text) pairs.
- This success is hard to replicate in 3D due to the scarcity of large-scale 3D-text datasets.
- Existing datasets are a great start but are still limited, focusing mostly on single objects.
- Real-world are compositional, defined by multiple objects and their spatial relationships.

Our Idea: "The whole is greater than the sum of its parts"

- 3D > 2D: Unlike 2D images, 3D objects can be combined into complex scenes without visual artifacts.
- Spatial Control: We can explicitly control spatial relationships to create semantically harder scenes.
- Training on structured, multi-object scenes will teach the model richer, more robust representations.

Method

Large scale 3d datasets are only single object, how can we generalize to scenes?



- Combine single samples in scenes according to simple spatial relations: "over", "next to"
- Use an LLM to create a realistic scene caption for the composition.
- Combine each sample in the batch with a fixed probability.
- Combine up to N objects per sample.

Method

How we combine point clouds and create scene captions:

Input: Samples p, Relations s, Target count POutput: Composed 3D sample c^{3D} c^{3D} , $p_{prev} \leftarrow \mathcal{A}^{3D}(p_0)$ for i=1 to n do $\begin{array}{c|c} p_i \leftarrow \mathcal{A}^{3D}(p_i) \\ \Delta_{pos} \leftarrow \mathcal{P}(p_i, p_{prev}, s_i) \\ p_i \leftarrow p_i + \Delta_{pos} + \delta + \epsilon \\ c^{3D} \leftarrow \operatorname{cat}(c^{3D}, p_i) \\ p_{prev} \leftarrow p_i \end{array}$ end $c^{3D} \leftarrow \mathcal{A}^{3D}(\operatorname{subsample}(c^{3D}, P))$ return c^{3D}

Algorithm 1: 3D Scene Forge algorithm.

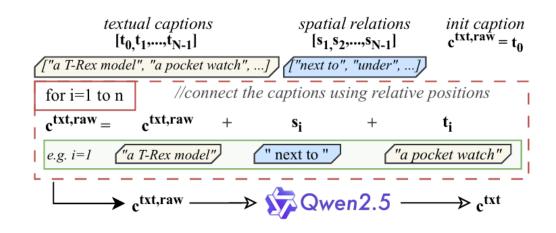


Figure 2: **Scene Caption Forge.** Starting from the initial caption (t_0) , each caption (t_i) is connected using its relative position (s_i) , creating a raw combined caption $c^{\text{txt,raw}}$. The raw caption $c^{\text{txt,raw}}$ is then refined to the final c^{txt} using Qwen2.5.

Method

Training loss with text-3D scene augmentation and 2D-3D singles:

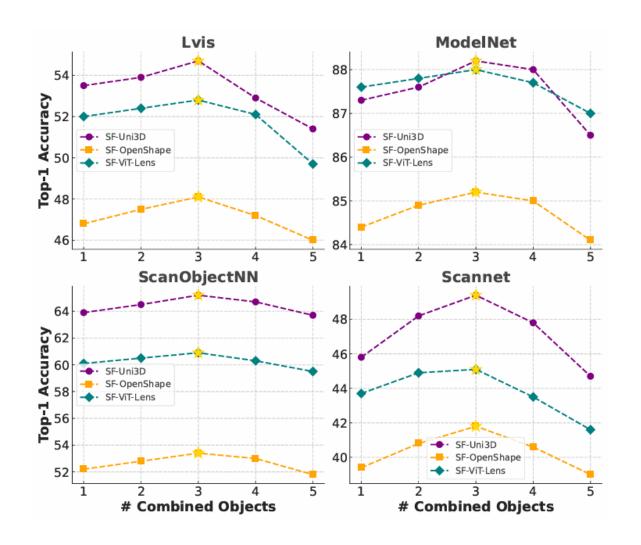
Loss Partitioning. We consider contrastive models employing the InfoNCE loss proposed in CLIP [17]. For modalities $m, n \in \{txt, 2D, 3D\}$ and a sample subset S, we define

$$\mathcal{L}_{m \to n}(\mathcal{S}) = -\frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} \log \frac{\exp(\langle e_i^m, e_i^n \rangle / \tau)}{\sum_{j \in \mathcal{S}} \exp(\langle e_i^m, e_j^n \rangle / \tau)},\tag{1}$$

where e_i^m , e_i^n are ℓ_2 -normalised embeddings and τ is a learnable temperature.

Let S_c and S_s denote the composed and single-object samples in a batch, with $N = |S_c| + |S_s|$. Because each sample is composed with probability α , $\mathbb{E}[|S_s|] = (1 - \alpha)N$. We scale the image–3D block so that, *per batch*, it contributes the same total gradient budget as the text–3D block:

$$\mathcal{L} = \underbrace{\frac{1}{2} \left[\mathcal{L}_{3D \to txt} (\mathcal{S}_c \cup \mathcal{S}_s) + \mathcal{L}_{txt \to 3D} (\mathcal{S}_c \cup \mathcal{S}_s) \right]}_{\text{text-3D (all } N \text{ samples)}} + \frac{N}{|\mathcal{S}_s|} \underbrace{\frac{1}{2} \left[\mathcal{L}_{3D \to 2D} (\mathcal{S}_s) + \mathcal{L}_{2D \to 3D} (\mathcal{S}_s) \right]}_{\text{2D-3D (singles only)}}. \quad (2)$$



What is the optimal value of the maximum #objects in a scene?

Evaluation is performed on established single-object and scene benchmarks, not on our scene compositions.

Detailed results for best value N=3

	Model	LVIS		ModelNet Scan		ObjNN	Scannet	inet Avg	Model	LVIS		ModelNet		ScanObjNN Sca		Scannet	Scannet Av	
		T1	T5	T1	T5	T1	T5	T1	Δ	1.10 001	T1	T5	T1	T5	T1	T5	T1	Δ
	ULIP 2	46.3	75.0	84.0	97.2	45.6	82.9	38.1		ULIP 2	50.6	79.1	84.7	97.1	51.5	89.3	38.9	_
	TAMM		71.7				86.1	42.4	_	TAMM	50.7	80.6	85.0	98.1	55.7	88.9	41.8	-
	MixCon3D	47.5	76.2	87.3	98.1	57.7	89.8	43.0	_	MixCon3D				98.3		89.2	44.1	-
	OmniBind-L	_	_	_	_	_	_	_	_	OmniBind-L				99.0		94.2	46.3	-
	OmniBind-F	_	_	_	_	_	_	_		OmniBind-F	53.6	81.8	87.1	99.0	64.7	94.4	46.1	
Classification	OpenShape	39.1	68.9	85.3	97.4	47.2	84.7	40.3		OpenShape	46.8	77.0	84.4	98.0	52.2	88.7	39.4	
	SF-OpenShape						85.9	41.5		SF-OpenShape	48.1	78.4	85.2	98.3	53.4	89.5	41.8	+1.
	ViT-Lens	50.1	78.1	86.8	97.8	59.8	87.7	43.8	.0.70	ViT-Lens	52.0	79.9	87.6	98.4	60.1	90.3	43.7	+0.
	SF-ViT-Lens	50.9	78.4	87.3	98.0	60.9	89.1	44.5		SF-ViT-Lens	52.8	80.7	88.0	89.9	60.9	91.2	45.1	+0.
	Uni3D	47.2	76.1	86.8	98.4	66.5	90.1	43.9	1.70	Uni3D	53.5	82.0	87.3	99.2	63.9	91.7	45.8	
	SF-Uni3D	48.9	78.4	87.5	99.0	67.3	91.5	47.6	+1.73	SF-Uni3D	54.7	84.8	88.2	99.2	65.2	93.4	49.4	+1.
	(a) T	Frain	ed oi	n ens	semb	le (no	o LVI	S).		(b) 7	rain	ed o	n ens	semb	le (w	ith LV	/IS).	
	Mathad	1	-shot		2-sh	ot		Mod	del			B-4	ΔB	-4 C	IDEr	ΔCID	Er EM	Δ
	Method	1 1 mIo			2-sh			Mod	del			B-4	ΔΒ	-4 C	IDEr	ΔCID)	Er EM

Few-shot segmentation & 3D VQA

Method	1-sl	not	2-shot			
	mIoU	Δ	mIoU	Δ		
OmniBind-L OmniBind-F	77.2 77.8	-	79.9 80.3	-		
OpenShape SF-OpenShape	74.0 76.2	+2.2	76.5 79.1	+2.6		
ViT-Lens SF-ViT-Lens	75.5 77.0	+1.5	77.9 80.1	+2.2		
Uni3D SF-Uni3D	75.9 78.5	+2.6	78.2 81.2	+3.0		

Model	B-4	Δ B-4	CIDEr	Δ CIDEr	ЕМ	ΔΕΜ
OmniBind-L + BLIP2-FlanT5 OmniBind-F + BLIP2-FlanT5	8.5 8.3	_	62.9 62.1	-	17.1 17.6	-
OpenShape + BLIP2-FlanT5 SF-OpenShape + BLIP2-FlanT5	6.3	+1.8	54.8 61.5	+6.7	14.1 16.9	+2.8
ViT-Lens + BLIP2-FlanT5 SF-ViT-Lens + BLIP2-FlanT5	7.2 8.5	+1.3	57.5 63.4	+5.9	15.7 17.8	+2.1
Uni3D + BLIP2-FlanT5 SF-Uni3D + BLIP2-FlanT5	7.5 10.4	+2.9	58.3 66.7	+8.4	16.4 20.5	+4.1

Table 2: One-shot and two-shot part segmentation on ShapeNetPart.

Table 3: Performance on the ScanQA dataset using BLEU-4, CIDEr, and Exact Match.

Our models also behave better when used as initialization for fine tuning on classification benchmarks with peft methods.

Table 4: Supervised fine-tuning accuracy (%).

Model	Method	Trainable Params	ModelNet40	ScanObjectNN	ScanNet Inst.
Uni3D	Full Fine-Tuning	1016.5M (100%)	94.28	97.12	82.72
	Adapter	7.6M (0.74%)	94.35	96.80	81.42
	DAPT	7.3M (0.72%)	94.33	96.78	82.65
	PointGST	4.1M (0.40%)	94.83	97.68	83.04
SF-Uni3D	Full Fine-Tuning	1016.5M (100%)	94.42	97.58	83.58
	Adapter	7.6M (0.74%)	94.46	97.09	82.56
	DAPT	7.3M (0.72%)	94.49	97.15	83.46
	PointGST	4.1M (0.40%)	94.95	98.09	84.29

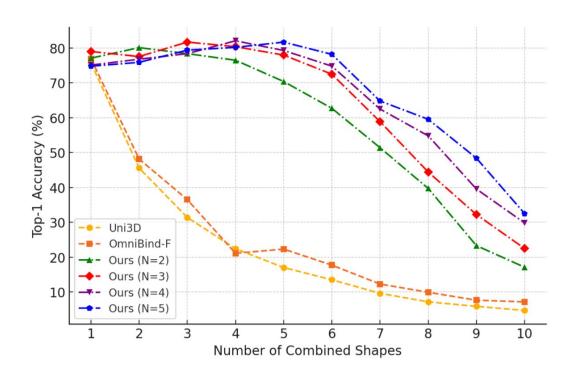


Figure 4: Top-1 averaged retrieval accuracy on the N-LVIS datasets as N increases.

How well does each model generalize to more complex scenes?

Evaluation is performed on the N-LVIS dataset, where each sample is a combination of N different ones.

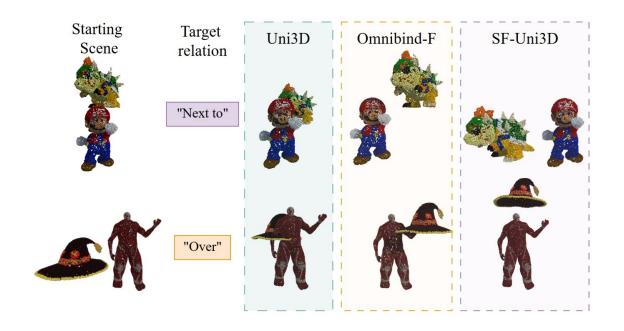


Figure 5: Object repositioning example.

Qualitatively verifying that the model has learnt spatial semantics

A tridimensional offset vector is optimized for the second object with frozen encoders, maximing cosine similarity (regularized).

$$\mathcal{L} = -\cos(\phi(x^{3D} + \Delta), \psi(x^{txt})) + \lambda ||\Delta||^2$$

Ablations

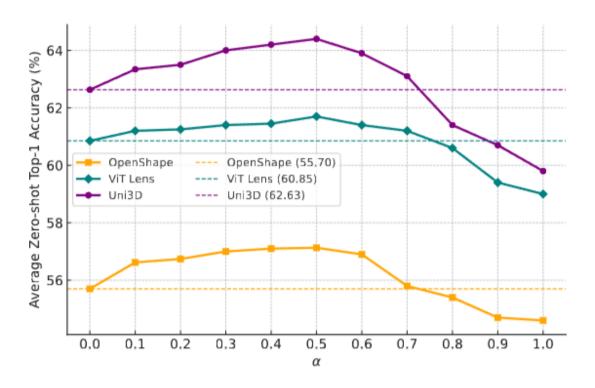


Figure 6: Effect of varying α on average zero-shot top-1 accuracy.

What is the best value for alpha?

Zero-Shot accuracy is averaged over the considered benchmarks.

Ablations

Do other composition functions work?

PointCutMix-K, the only one preserving key features of mixed shapes, is the only one able to bring improvements, confirming the importance of well-structured compositions.

Composition Method	Lvis Top-1	ModelNet Top-1	ScanObjNN Top-1	Scannet Top-1
None (Uni3D)	53.5	87.3	63.9	45.8
PointCutMix-K	53.5	87.1	64.1	47.5
PointCutMix-R	44.7	83.0	45.1	34.8
PointMixup	39.2	78.7	41.4	30.2
SF-Uni3D (N=2)	53.9	87.6	64.5	48.2

Table 5: Different 3D composition methods on zero-shot cls.

Ablations

Table 6: Generalization to unseen spatial relations on ScanQA for all backbones.

Relation Type	Metric	OpenShape			ViT-Lens			Uni3D			
-J P •	1120220	Baseline	SF	Δ	Baseline	SF	Δ	Baseline	SF	Δ	
Attached To (21)	CIDEr	54.5	61.5	+7.0	57.1	63.3	+6.2	57.9	66.6	+8.7	
	EM	14.1	17.1	+3.0	15.6	17.9	+2.3	16.5	20.8	+4.3	
Sitting On (59)	CIDEr	56.8	63.4	+6.6	59.0	65.1	+6.1	61.0	70.1	+9.1	
	EM	15.2	17.7	+2.5	16.6	18.4	+1.8	17.5	22.6	+5.1	
Between (112)	CIDEr	54.1	61.2	+7.1	56.8	62.9	+6.1	57.2	66.5	+9.3	
	EM	14.0	17.0	+3.0	15.5	17.9	+2.4	15.8	20.5	+4.7	
Closest To (112)	CIDEr	55.0	61.8	+6.8	57.5	63.5	+6.0	58.5	67.0	+8.5	
	EM	14.3	17.2	+2.9	15.8	18.0	+2.2	16.2	20.4	+4.2	
In Front Of (246)	CIDEr	56.1	62.5	+6.4	58.2	64.0	+5.8	60.3	68.3	+8.0	
	EM	14.9	17.6	+2.7	16.3	18.2	+1.9	17.1	21.8	+4.7	

Are simple relations enough?

We isolate questions from ScanQA involving relations unseen during training, and we show that our models correctly generalize and improve VQA also in these cases.

Thank You!

corresponding author:
cristian.sbrolli@polimi.it

