Samsung Advanced Institute of Technology

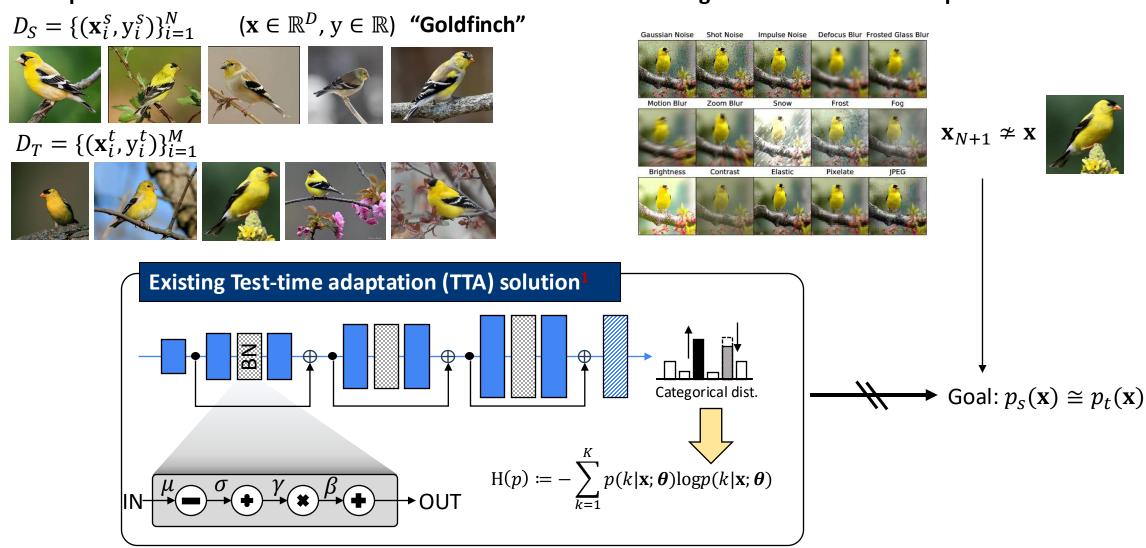
## Rethinking Entropy in Test-Time Adaptation: The Missing Piece from Energy Duality

Mincheol Park<sup>1</sup>, Heeji Won<sup>2</sup>, Won Woo Ro<sup>3</sup>, and Suhyun Kim<sup>4</sup>

<sup>1</sup>Samsung Advanced Institute of Technology, <sup>1</sup>Samsung Electronics, <sup>2</sup>Korea University, <sup>3</sup>Yonsei University, <sup>4</sup>Kyung Hee University












## **Covariate Shifts and Fully Test-Time Adaptation**

Assumption that test data comes from the same distribution as training data is often broken in practice



## First Motivation in Entropy Minimization

- $p_s(\mathbf{x}) \cong p_t(\mathbf{x})$  is necessary for mitigation of covariate shifts
  - It is necessary to introduce a quantity that quantifies how the data likely belongs to the marginal parameterized  $m{ heta}$
  - Energy maps data to a deterministic scalar by summing over the probable classes  $\checkmark$  a larger negative value represents more likely (or highly observable) data under the distribution  $p_{\theta}(\mathbf{x})$
- EM pushes the energy to the logit of the most confident class, while confident classes become confident

$$p(y|\mathbf{x};\boldsymbol{\theta}) = \frac{\exp(f_{\boldsymbol{\theta}}(\mathbf{x})[\mathbf{y}])}{\sum_{c} \exp(f_{\boldsymbol{\theta}}(\mathbf{x})[c])} \qquad E_{\boldsymbol{\theta}}(\mathbf{x}) \triangleq -\log \sum_{k=1}^{K} \exp(f_{\boldsymbol{\theta}}(\mathbf{x})[k]) \qquad H(p) \coloneqq -\sum_{k=1}^{K} p(k|\mathbf{x};\boldsymbol{\theta}) \log p(k|\mathbf{x};\boldsymbol{\theta})$$
(Entropy)

$$E_{\theta}(\mathbf{x}) \triangleq -\log \sum_{k=1}^{K} \exp(f_{\theta}(\mathbf{x})[k])$$
 (Energy)

$$H(p) := -\sum_{k=1}^{K} p(k|\mathbf{x}; \boldsymbol{\theta}) \log p(k|\mathbf{x}; \boldsymbol{\theta})$$
(Entropy)

#### **Lemma 1. Conjugate Relation**

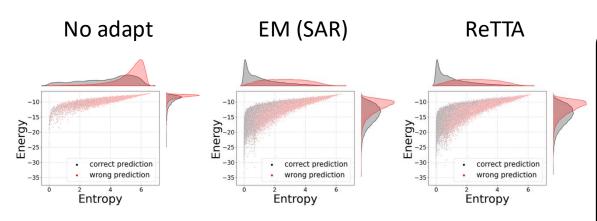
Suppose z represents the model's logit, and g denotes the gradient of the concave function  $E_{\theta}$  w.r.t. the logit **z**. The concave conjugate of  $E_{\theta}(\mathbf{z})$  is defined as  $E_{\theta}^*(\mathbf{g}) = \min_{\mathbf{z}} \{\mathbf{g}^T \mathbf{z} - E_{\theta}(\mathbf{z})\}.$ 

Then, the gradient **g** corresponds negatively to the Softmax, i.e.,  $\mathbf{g} = \nabla_{\mathbf{z}} E_{\boldsymbol{\theta}}(\mathbf{z}) = -\mathbf{p}(\mathbf{x})$ , and the conjugate function  $E_{\boldsymbol{\theta}}^*(\mathbf{g})$ becomes the negative entropy of  $\mathbf{p}(\mathbf{x})$ :

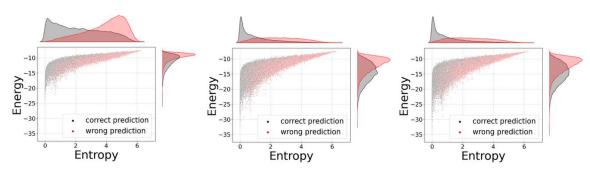
$$E_{\boldsymbol{\theta}}^*(\mathbf{g}) = H(\mathbf{p}) = -\mathbf{p}(\mathbf{x})^T \log \mathbf{p}(\mathbf{x})$$

#### Lemma 2. Fenchel-Moreau Theorem

Primal function  $E_{\theta}(\mathbf{z})$  and its conjugate function  $E_{\theta}^{*}(\mathbf{g})$ exhibit bi-duality. The primal function can be completely recovered from its conjugate function  $E_{\theta}^*(\mathbf{g})$ . Thus, energy and entropy satisfy the following relationship:


$$E_{\boldsymbol{\theta}}(\mathbf{z}) = \min_{\mathbf{p}} \{ -\mathbf{p}^T \mathbf{z} - H(\mathbf{p}) \}$$

When 
$$H(\mathbf{p}) \to 0$$
,  $E_{\boldsymbol{\theta}}(\mathbf{z}) \to -z_{k^*}$ 

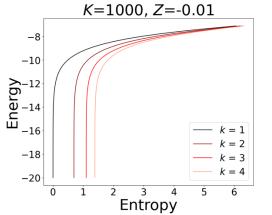

**p** is more confident<sup>1</sup>, ideally converge to one-hot

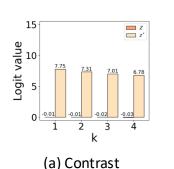
## **Second Motivation in Entropy Minimization**

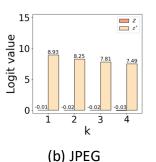
■ To make entropy approach zero, an additional goal should be to guide the logits



#### Contrast (severity 5) in ImageNet-C<sup>1</sup>





JPEG (severity 5) in ImageNet-C<sup>1</sup>


#### Theorem 1. Energy-entropy equation

Suppose the logit of the model  $f_{\theta}$  is defined over K classes, where k classes are assigned a primary logit  $z^*$  with strong influence, and the remaining K-k classes share a singular logit Z with minimal influence. Then, the closed-form equation for the energy-entropy relationship based on the conditioned logits is given by:

$$H(E_{\theta}) = -(1 - C(k)e^{E_{\theta}})\log\left(\frac{1 - C(k)e^{E_{\theta}}}{k}\right) - C(k)e^{E_{\theta}}(Z + E_{\theta})$$







where  $C(k) = (K - k)e^{Z}$ 

## **Objective from Energy-Based Modeling (EBM)**

#### TTA through EBMs<sup>1</sup>

$$E_{\theta}(\mathbf{x}) \triangleq -\log \sum_{k=1}^{K} \exp(f_{\theta}(\mathbf{x}))$$
 (Free energy)

$$p_{\theta}(\mathbf{x}) = \frac{\exp(-E_{\theta}(\mathbf{x}))}{Z_{\theta}}$$
 Marginal density

#### Goal

$$\nabla_{\boldsymbol{\theta}} \mathbb{E}_{p(\mathbf{x})} \log p_{\boldsymbol{\theta}}(\mathbf{x}) = -\mathbb{E}_{p(\mathbf{x})} \nabla_{\boldsymbol{\theta}} E_{\boldsymbol{\theta}}(\mathbf{x}) - \nabla_{\boldsymbol{\theta}} \log Z_{\boldsymbol{\theta}}$$

$$= -\mathbb{E}_{p(\mathbf{x})} \nabla_{\boldsymbol{\theta}} E_{\boldsymbol{\theta}}(\mathbf{x}) + \mathbb{E}_{p_{\boldsymbol{\theta}}(\mathbf{x})} \nabla_{\boldsymbol{\theta}} E_{\boldsymbol{\theta}}(\mathbf{x})$$
 (Contrastive)
Positive Negative

SGLD<sup>2</sup>  $\mathbf{x}^{k+1} \leftarrow \mathbf{x}^k - \frac{\epsilon^2}{2} \nabla_{\mathbf{x}} E_{\theta}(\mathbf{x}^k) + \epsilon \mathbf{z}$ 

(Assume MCMC step=1) Generative process

#### Lemma 3. Fisher Divergence

The one-step SGLD update initialized from  $\mathbf{x} \sim p(\mathbf{x})$  approximates the gradient of the Fisher divergence between the true distribution  $p(\mathbf{x})$  and the model distribution  $p_{\theta}(\mathbf{x})$  as follows:

$$\nabla_{\boldsymbol{\theta}} \mathbb{E}_{p(\mathbf{x})} \log p_{\boldsymbol{\theta}}(\mathbf{x}) \cong \frac{\epsilon^2}{2} \nabla_{\boldsymbol{\theta}} D_F(p(\mathbf{x}) || p_{\boldsymbol{\theta}}(\mathbf{x})) + o(\epsilon^2)$$

#### **Derivation of objective based on EBM**

$$D_F(p(\mathbf{x})||p_{\theta}(\mathbf{x})) = \mathbb{E}_{p(\mathbf{x})} \left[ \frac{1}{2} \|\nabla_{\mathbf{x}} \log p(\mathbf{x}) - \nabla_{\mathbf{x}} \log p_{\theta}(\mathbf{x})\|^2 \right]$$
(Score Matching)<sup>3</sup>

$$(Score Matching)^3$$

$$\cong \mathbb{E}_{p(\mathbf{x})}[\operatorname{Tr}(\nabla_{\mathbf{x}}^2 \log p_{\boldsymbol{\theta}}(\mathbf{x})) + \frac{1}{2} \|\nabla_{\mathbf{x}} \log p_{\boldsymbol{\theta}}(\mathbf{x})\|^2]$$

$$= \mathbb{E}_{p(\mathbf{x})} \left[ \sum_{i=1}^{d} \frac{\partial^{2} E_{\boldsymbol{\theta}}(\mathbf{x})}{(\partial x_{i})^{2}} + \frac{1}{2} \sum_{i=1}^{d} \left( \frac{\partial E_{\boldsymbol{\theta}}(\mathbf{x})}{\partial x_{i}} \right)^{2} \right]$$

- 1. Yuan et al., "TEA: Test-time Energy Adaptation," CVPR, 2024
- 2. Du et al., "Improved Contrastive Divergence Training of Energy-Based Models," ICML, 2021
- 3. Hyvarinen and Dayan, "Estimation of Non-normalized Statistical Models by Score Matching," Journal of Machine Learning Research 6(4), 2005

## **Sliced Score Matching**

- Energy-based modeling allow the model to reshape its likelihood landscape in response to data
- Generative sampling is unstable → Sampling-free loss function
- Computing score matching requires evaluating the trace of Hessian → sensitive the sharp local curvature
- SSM matches inner products of score functions → scalable at high-dimensional data

$$D_F(p(\mathbf{x})||p_{\theta}(\mathbf{x})) = \mathbb{E}_{p(\mathbf{x})}[\text{Tr}(\nabla_{\mathbf{x}}^2 \text{log}p_{\theta}(\mathbf{x})) + \frac{1}{2}||\nabla_{\mathbf{x}} \text{log}p_{\theta}(\mathbf{x})||^2]$$
Hessian



#### Sliced Score Matching (SSM)1

$$D_{SF}(p(\mathbf{x})||p_{\theta}(\mathbf{x})) = \mathbb{E}_{p(\mathbf{x})} \mathbb{E}_{p(\mathbf{v})} \left[ \frac{1}{2} \| \mathbf{v}^T \nabla_{\mathbf{x}} \log p(\mathbf{x}) - \mathbf{v}^T \nabla_{\mathbf{x}} \log p_{\widehat{\boldsymbol{\theta}}}(\mathbf{x}) \|^2 \right]$$
$$\ell_{SSM}(\boldsymbol{\theta}) = \frac{1}{|\mathfrak{B}_t|} \sum_{\mathbf{x} \in \mathfrak{B}_t} \left[ \sum_{i=1}^d \sum_{j=1}^d \frac{\partial^2 E_{\boldsymbol{\theta}}(\mathbf{x})}{\partial x_i \partial x_j} v_i v_j + \frac{1}{2} \sum_{i=1}^d \left( \frac{\partial E_{\boldsymbol{\theta}}(\mathbf{x})}{\partial x_i} v_i \right)^2 \right]$$

## **Targeted Class Convergence and ReTTA Loss**

#### Guidance of the logits toward a zero-entropy region

- By leveraging the model's discriminative power,
   ReTTA treats the most probable class as the target class
- Total loss for TTA, ReTTA
  - $\ell_{ReTTA}(\boldsymbol{\theta}) = \ell_{EM}(\boldsymbol{\theta}) + \lambda_1(\alpha)\ell_{SSM}(\boldsymbol{\theta}) + \lambda_2\ell_{TCC}(\boldsymbol{\theta})$
  - $\lambda_1(\alpha)$  is a self-adjusting coefficient

#### **Targeted Class Convergence (TCC)**

$$\ell_{TCC}(\boldsymbol{\theta}) = \frac{1}{|\mathfrak{B}_t|} \sum_{\mathbf{x} \in \mathfrak{B}_t} \left[ -\log \left( \frac{\exp(f_{\boldsymbol{\theta}}(\mathbf{x})[\tilde{y}])}{\sum_k \exp(f_{\boldsymbol{\theta}}(\mathbf{x})[k])} \right) \right]$$

$$\min_{\alpha \in [0,1]} \|\alpha \nabla_{\boldsymbol{\theta}} \ell_{\underline{EM}}(\boldsymbol{\theta}) + (1-\alpha) \nabla_{\boldsymbol{\theta}} \ell_{SSM}(\boldsymbol{\theta})\|_{2}^{2} \text{ (MOO problem)}^{1}$$

$$\underline{\text{Entropy}}$$

# $\alpha = \frac{(\nabla_{\boldsymbol{\theta}} \ell_{SSM}(\boldsymbol{\theta}) - \nabla_{\boldsymbol{\theta}} \ell_{EM}(\boldsymbol{\theta}))^{T} \cdot \nabla_{\boldsymbol{\theta}} \ell_{SSM}(\boldsymbol{\theta})}{\|\nabla_{\boldsymbol{\theta}} \ell_{EM}(\boldsymbol{\theta}) - \nabla_{\boldsymbol{\theta}} \ell_{SSM}(\boldsymbol{\theta})\|^{2}}$

**Self-adjusting Coefficient** 

$$\lambda_1(\alpha) = \max\left(\min\left(\frac{1-\alpha}{\alpha},1\right),0\right)$$

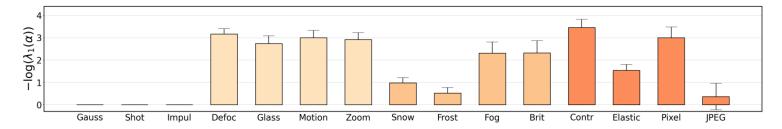
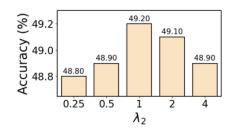
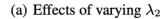


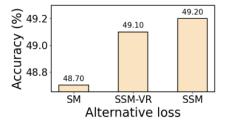

Figure 2: Breakdown of the self-adjusting coefficient  $\lambda_1$  during total TTA iterations on ImageNet-C (severity 5), based on Table 1. The negative-log scale has zero corresponding to  $\lambda_1 = 1$ , and higher values indicate near-zero  $\lambda_1$ . The four colors represent Noise, Blur, Weather, and Digital groups.

### **Experimental Results**

#### ReTTA outperforms current methods under covariate shifts for real-world dataset

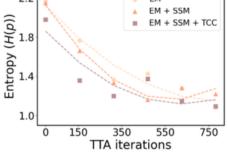

• ReTTA shows also better performance under label distribution shifts in test scenarios


| Mild           | Noise              |                          |                 | Blur            |                  |                         |                  | Weather         |                  |                          |                          | Digital           |                          |                  |                  | Avia                     |
|----------------|--------------------|--------------------------|-----------------|-----------------|------------------|-------------------------|------------------|-----------------|------------------|--------------------------|--------------------------|-------------------|--------------------------|------------------|------------------|--------------------------|
|                | Gauss.             | Shot                     | Impul.          | Defoc.          | Glass            | Motion                  | Zoom             | Snow            | Frost            | Fog                      | Brit.                    | Contr.            | Elastic                  | Pixel            | JPEG             | Avg.                     |
| ResNet-50 (BN) | 2.2                | 2.9                      | 1.8             | 17.9            | 9.8              | 14.8                    | 22.5             | 16.9            | 23.3             | 24.4                     | 58.9                     | 5.4               | 16.9                     | 20.7             | 31.7             | 18.0                     |
| MEMO           | 7.5                | 8.8                      | 8.9             | 19.8            | 13               | 20.7                    | 27.7             | 25.3            | 28.7             | 32.2                     | 61.0                     | 11.0              | 23.8                     | 33.0             | 37.6             | 23.9                     |
| Tent           | 29.2               | 31.2                     | 30.1            | 28.1            | 27.7             | 41.4                    | 49.4             | 47.2            | 41.5             | 57.7                     | 67.4                     | 29.2              | 54.8                     | 58.5             | 52.4             | 43.1                     |
| EATA           | 34.9               | 37.1                     | 35.8            | 33.4            | 33.0             | 47.1                    | 52.7             | 51.6            | 45.7             | 60.0                     | 68.1                     | 44.4              | 57.9                     | 60.6             | 55.1             | 47.8                     |
| SAR            | 30.6               | 30.6                     | 31.3            | 28.5            | 28.5             | 41.9                    | 49.4             | 47.1            | 42.2             | 57.5                     | 67.3                     | 37.8              | 54.6                     | 58.4             | 52.1             | 43.9                     |
| DeYO           | 35.6               | 37.9                     | 37.1            | 33.8            | 34.1             | 48.5                    | 52.8             | 52.7            | 46.4             | 60.6                     | 68.0                     | 46.1              | 58.4                     | 61.5             | 55.7             | 48.6                     |
| TEA*           | 16.8               | 17.5                     | 17.5            | 15.8            | 16.0             | 27.3                    | 39.9             | 35.3            | 33.9             | 49.0                     | 65.7                     | 17.9              | 45.1                     | 50.2             | 41.3             | 32.6                     |
| AEA            | 26.2               | 26.8                     | 27.3            | 24.2            | 20.8             | 40.3                    | 48.1             | 47.3            | 41.4             | 56.0                     | 65.7                     | 9.5               | 53.4                     | 56.7             | 49.5             | 39.5                     |
| ReTTA (ours)   | $ 37.3_{\pm 0.0} $ | <b>39.7</b> $_{\pm 0.2}$ | $38.9_{\pm0.2}$ | $34.5_{\pm0.3}$ | $34.1_{\pm 0.0}$ | <b>49.3</b> $_{\pm0.2}$ | $53.1_{\pm 0.2}$ | $52.7_{\pm0.1}$ | $46.1_{\pm 0.2}$ | <b>60.7</b> $_{\pm 0.1}$ | <b>68.2</b> $_{\pm 0.1}$ | $ 47.6_{\pm0.3} $ | <b>58.6</b> $_{\pm 0.0}$ | $61.5_{\pm 0.0}$ | $56.0_{\pm 0.0}$ | <b>49.2</b> $_{\pm 0.0}$ |


Table 1: Comparisons with baseline TTA methods on ImageNet-C at severity level 5 under mild scenario in terms of accuracy (%). \* TEA was not publicly reported and was tested directly.

| Label Shifts   | Noise                       |                          |                           | Blur                        |                          |                           |                   | Weather                  |                   |                          |                          | Digital                      |                           |                          |                          |                          |
|----------------|-----------------------------|--------------------------|---------------------------|-----------------------------|--------------------------|---------------------------|-------------------|--------------------------|-------------------|--------------------------|--------------------------|------------------------------|---------------------------|--------------------------|--------------------------|--------------------------|
|                | Gauss.                      | Shot                     | Impul.                    | Defoc.                      | Glass                    | Motion                    | Zoom              | Snow                     | Frost             | Fog                      | Brit.                    | Contr.                       | Elastic                   | Pixel                    | JPEG                     | Avg.                     |
| ResNet-50 (GN) | 17.9                        | 19.9                     | 17.9                      | 19.7                        | 11.3                     | 21.3                      | 24.9              | 40.4                     | 47.4              | 33.6                     | 69.3                     | 36.3                         | 18.7                      | 28.4                     | 52.2                     | 30.6                     |
| MEMO           | 18.4                        | 20.6                     | 18.4                      | 17.1                        | 12.7                     | 21.8                      | 26.9              | 40.7                     | 46.9              | 34.8                     | 69.6                     | 36.4                         | 19.2                      | 32.2                     | 53.4                     | 31.3                     |
| Tent           | 3.6                         | 4.2                      | 4.4                       | 16.5                        | 5.9                      | 26.9                      | 28.4              | 17.9                     | 26.2              | 2.3                      | 72.2                     | 46.1                         | 7.3                       | 52.3                     | 56.2                     | 24.7                     |
| EATA           | 25.7                        | 28.6                     | 24.8                      | 18.5                        | 19.6                     | 24.1                      | 28.4              | 35.3                     | 33.0              | 41.2                     | 65.2                     | 33.3                         | 28.0                      | 42.4                     | 43.1                     | 32.7                     |
| SAR            | 33.7                        | 36.9                     | 35.3                      | 19.3                        | 20.3                     | 33.8                      | 29.8              | 21.9                     | 44.7              | 34.9                     | 71.9                     | 46.7                         | 6.6                       | 52.3                     | 56.2                     | 36.3                     |
| DeYO           | 42.5                        | 44.9                     | 43.8                      | 22.2                        | 16.3                     | 41.0                      | 13.2              | 52.2                     | 51.5              | 39.7                     | 73.4                     | 52.6                         | 46.9                      | 59.3                     | 59.3                     | 43.9                     |
| TEA*           | 0.4                         | 0.4                      | 0.4                       | 0.2                         | 0.1                      | 0.4                       | 1.2               | 1.1                      | 1.3               | 0.4                      | 13.5                     | 0.5                          | 0.3                       | 0.3                      | 5.0                      | 1.7                      |
| ReTTA (ours)   | $42.7_{\pm 0.3}$            | $\textbf{45.1}_{\pm0.1}$ | $\textbf{44.2}_{\pm 0.2}$ | <b>29.4</b> $_{\pm 2.5}$    | <b>22.9</b> $_{\pm 5.8}$ | $\textbf{41.1}_{\pm 0.1}$ | $34.4_{\pm 14.4}$ | <b>52.8</b> $_{\pm 0.5}$ | $51.1_{\pm 0.1}$  | $\textbf{58.5}_{\pm0.2}$ | $\textbf{73.5}_{\pm0.1}$ | $ 49.8_{\pm 0.2} $           | $\textbf{48.4}_{\pm 0.7}$ | <b>59.8</b> $_{\pm0.3}$  | <b>59.3</b> $_{\pm 0.0}$ | $47.5_{\pm 0.4}$         |
| VitBase (LN)   | 9.4                         | 6.7                      | 8.3                       | 29.1                        | 23.4                     | 34.0                      | 27.1              | 15.8                     | 26.4              | 47.4                     | 54.7                     | 44.0                         | 30.5                      | 44.5                     | 47.6                     | 29.9                     |
| MEMO           | 21.6                        | 17.4                     | 20.6                      | 37.1                        | 29.6                     | 40.6                      | 34.4              | 25.0                     | 34.8              | 55.2                     | 65.0                     | 54.9                         | 37.4                      | 55.5                     | 57.7                     | 39.1                     |
| Tent           | 33.9                        | 1.8                      | 27.2                      | 54.8                        | 52.9                     | 58.6                      | 54.3              | 12.4                     | 11.7              | 69.7                     | 76.3                     | 66.3                         | 59.6                      | 69.7                     | 66.6                     | 47.7                     |
| EATA           | 36.2                        | 34.7                     | 35.5                      | 43.4                        | 44.3                     | 49.3                      | 48.5              | 53.2                     | 53.5              | 62.3                     | 72.7                     | 18.8                         | 58.0                      | 64.7                     | 62.8                     | 49.2                     |
| SAR            | 42.3                        | 34.9                     | 44.1                      | 50.0                        | 50.5                     | 55.6                      | 53.1              | 59.7                     | 47.2              | 66.2                     | 75.2                     | 50.3                         | 60.1                      | 67.3                     | 65.0                     | 54.8                     |
| DeYO           | 53.5                        | 36.0                     | 54.6                      | 57.6                        | 58.7                     | 63.7                      | 46.2              | 67.6                     | 66.0              | 73.2                     | 77.9                     | 66.7                         | 69.0                      | 73.5                     | 70.3                     | 62.3                     |
| TEA*           | 6.9                         | 13.2                     | 14.6                      | 0.9                         | 1.4                      | 7.1                       | 3.1               | 0.6                      | 1.4               | 66.9                     | 73.7                     | 62.1                         | 1.4                       | 68.2                     | 63.8                     | 25.7                     |
| ReTTA (ours)   | $ $ <b>54.0</b> $_{\pm0.1}$ | $\textbf{55.0}_{\pm0.1}$ | $55.2_{\pm 0.1}$          | $ $ <b>57.8</b> $_{\pm0.2}$ | <b>58.7</b> $_{\pm0.2}$  | <b>64.7</b> $_{\pm 0.1}$  | $58.5_{\pm 7.5}$  | $69.0_{\pm0.4}$          | 67.1 $_{\pm 0.1}$ | $71.2_{\pm 0.2}$         | <b>77.9</b> $_{\pm 0.0}$ | $ $ <b>67.6</b> $_{\pm 1.0}$ | $\textbf{69.8}_{\pm0.4}$  | <b>74.1</b> $_{\pm 0.2}$ | <b>71.6</b> $_{\pm 0.3}$ | <b>64.8</b> $_{\pm 0.5}$ |

Table 2: Comparisons with baseline TTA methods on ImageNet-C (severity 5) under online label shifts (imbalance ratio= $\infty$ ) in accuracy (%). \* TEA was not publicly reported and was tested directly.








(b) Effects of alternatives for SSM





(b) Fog

Samsung Advanced Institute of Technology

## Thank you

**Exhibit Hall C.D.E (San Diego)** 

