

# FHGS: Feature-Homogenized Gaussian Splatting

——Resolving the Anisotropic Contradiction in 3D Semantic Fields with Physics-Inspired Non-Differentiable Feature Guidance

### December 2025

Department of Mechanical and Automation Engineering

The Chinese University of Hong Kong



Q. G. Duan



Benyun Zhao



Mingqiao Han



Yijun Huang



Ben M. Chen

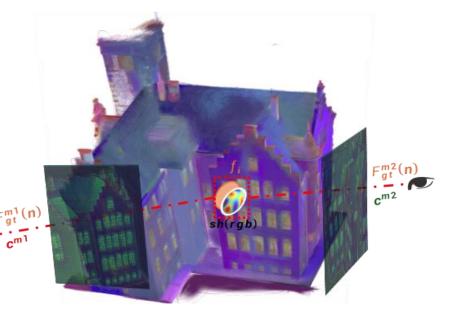


- ➤ 3D Gaussian Splatting enables real-time, high-fidelity 3D scene rendering, while *2D-Vision-Large-Models* (e.g., SAM, CLIP, DINOv3) excel at image-level semantic understanding.
- ➤ Robot tasks (e.g., VLN and task planning) rely on expressive *3D scene representation* that supports reliable semantic understanding.
- ➤ Methods like PointNet require costly dataset creation and training, whereas *2D-Vision-Large-Models* are already mature.
- > Gaussian Splatting provides a differentiable 3D framework, enabling semantic distillation from 2D to 3D.

## **Motivation**



- > Fundamental conflict: *anisotropic* color vs. *isotropic* semantics.
- **Efficiency bottleneck**: slow multi-view optimization.
- **Feature distortion**: degradation of pretrained knowledge.



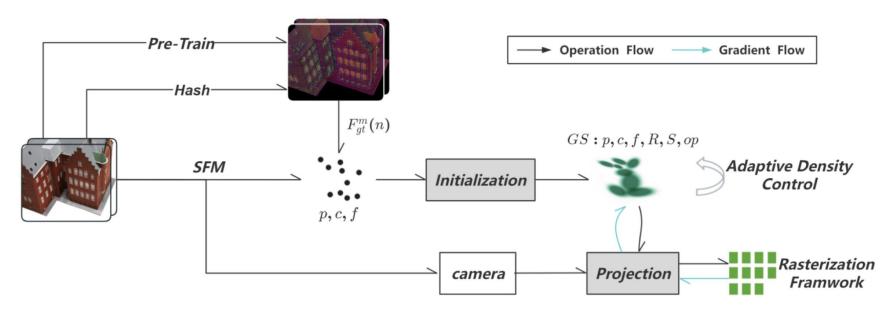
Feature Field: 
$$F_{gt}^{m1}(n) = F_{gt}^{m2}(n) = f_i$$
  
RGB Field:  $c^{m1} \neq c^{m2}$ 

The contradiction between the *anisotropic* color of gaussian primitives in RGB field and the *isotropic* requirement of semantic features

## **Our Method: Feature-Homogenized Gaussian Splatting (FHGS)**



To resolve the anisotropy-isotropy conflict, we propose FHGS, a framework built on three core innovations:



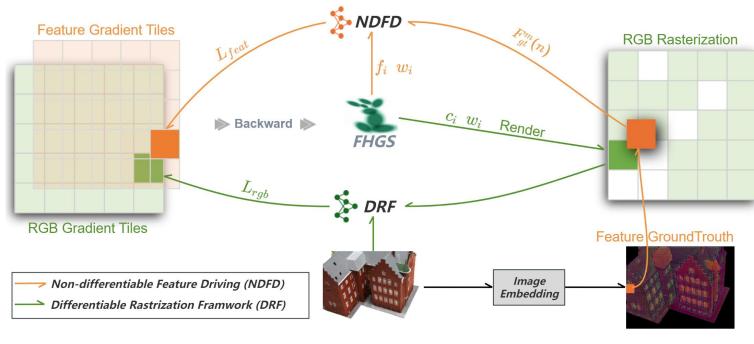
Pipeline of the General Feature Fusion Architecture

- ➤ Universal Fusion Architecture: Fusing semantic features from 2D models into 3D Gaussians.
- Non-Differentiable Feature Driving (NDFD): Using feature loss to exclusively optimize Gaussian geometry and opacity.
- ➤ Physics-Inspired Dual-Drive Optimization: Applying a dual-force loss for both global alignment and local coherence.

## **Non-Differentiable Feature Driving**



- ➤ Differentiable Rasterization Framework (DRF Green Path):
  - ❖ Optimizes Color (c<sub>i</sub>) using a standard, differentiable renderer and RGB loss.
- ➤ Non-Differentiable Feature Driving (NDFD Orange Path):
  - ❖ Optimizes *Geometry & Opacity* (f<sub>i</sub>) using a direct loss in the feature space.
  - ❖ This path bypasses the renderer, using abstract features to guide the scene's structure.

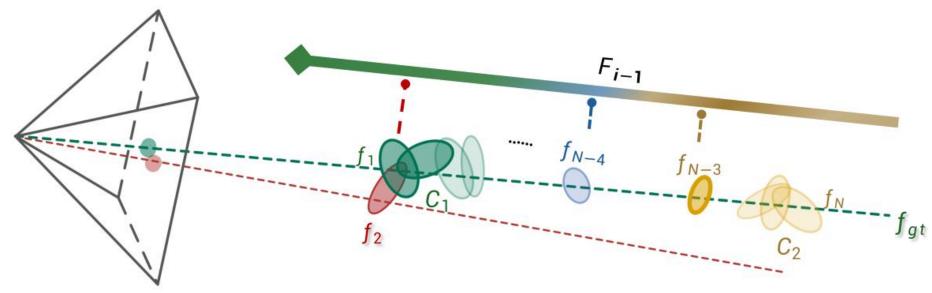


Schematic representation of the two mechanisms of FHGS: NDFD and DRF

This separation leads to more stable and meaningful geometry optimization, driven by high-level features, while the appearance is refined for photorealism.

### **Dual-Drive Mechanism**





$$Loss_{gt} = \sum_{i=1}^{N} \sigma_i w_i$$

Featrue-Field-Driven

- Inspired by electric fields driving charges
- > Feature-field driving + principle of "like attracts, unlike repels"
- ➤ Minimize similarity error to obtain a multi-view—stable semantic feature field

$$Loss_{cf} = \sum_{i=1}^{N} \sum_{j=1}^{N} w_i w_j \left( 1 - cos \langle f_i \cdot f_j \rangle \right)$$

*Intercharge Force*( $F_{i-1}$ )

(implemented as the accumulated force exerted by all charges on the current charge)

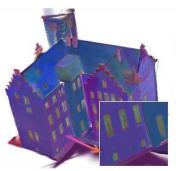


### **Ablation on Feature Reconstruction**

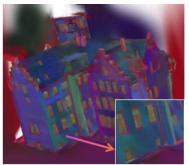
- (a) Ground Truth: The target high-fidelity features.
- **(b) Ours (FHGS):** Reconstructs *sharp & accurate* features, closely matching the ground truth.
- (c) Ablation (w/o L\_cf): *Performance degrades* without our feature consistency loss, proving its importance.
- (d) Baseline (2DGS): Produces blurry and inaccurate features.



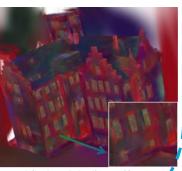
(a) Feature ground truth



(b) FHGS (ours)



(c) FHGS (w/o  $L_{cf}$ )



(d) 2DGS (baseline)

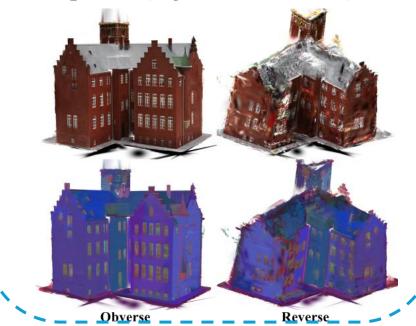
## **Resulting 3D Geometry**

## **High-Fidelity Geometry:**

Our features produce a *clean and detailed* 3D model

## **Novel View Consistency:**

Our model maintains a *robust and coherent* structure even from new viewpoints (e.g., Reverse view).



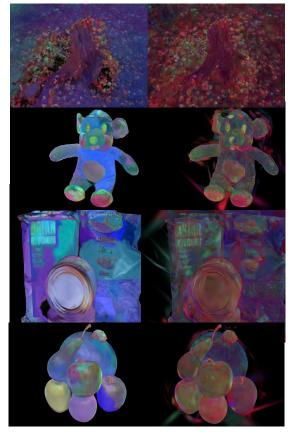


We conducted extensive experiments on multiple public datasets, including indoor DTU and outdoor Mip-NeRF 360. FHGS shows clear advantages on several fronts.

- > Feature fusion quality *cleaner*, *crisper* 
  - Sharper semantic boundaries.
  - ❖ **Significantly suppressed** background noise compared to Feature3DGS.
- > Geometry reconstruction & denoising semantics-guided geometry
  - ❖ Injecting semantic cues results in **smoother**, **more complete** surfaces.
  - **Effectively removes** artifacts like speckles and "floaters".
- > Training efficiency orders-of-magnitude *faster*

Powered by **NDFD** and an efficient **physics-based model**, FHGS trains far faster than competing methods. On DTU, Feature3DGS takes over 24 hours, whereas FHGS completes in about *5 minutes*—surpassing even our 2DGS baseline and paving the way for real-time applications.







### Table 1 –Indoor scenes

FHGS matches Feature3DGS in PSNR, achieves the *best FE/FL1*, and is >10× *faster*, even slightly faster than 2DGS.

#### Table 1: Quantitative results comparison on indoor scenes

| Method                     | DTU-24 [29]      |                     |                     |                      | DTU-37 [29]      |                     |                     |                   | MN360-kitchen [15] |                     |                     |                |
|----------------------------|------------------|---------------------|---------------------|----------------------|------------------|---------------------|---------------------|-------------------|--------------------|---------------------|---------------------|----------------|
|                            | PSNR↑            | FE↓                 | FL1↓                | Time↓                | PSNR↑            | FE↓                 | FL1↓                | Time↓             | PSNR↑              | FE↓                 | FL1↓                | Time↓          |
| 2DGS                       | 30.1             | 1.35                | 0.61                | 6.1m                 | 30.5             | 1.31                | 0.52                | 6.3m              | 30.2               | 1.32                | 0.79                | 6.5m           |
| Feature3DGS<br>FHGS (ours) | <b>31.5</b> 30.9 | 0.52<br><b>0.15</b> | 0.24<br><b>0.22</b> | 82.2m<br><b>5.2m</b> | <b>31.1</b> 30.8 | 0.88<br><b>0.21</b> | 0.31<br><b>0.18</b> | 73.2m <b>5.7m</b> | <b>31.7</b> 30.8   | 0.63<br><b>0.23</b> | 0.31<br><b>0.21</b> | 113.2m<br>5.1m |

### **Table 2 – Outdoor scenes**

FHGS keeps the *strongest feature consistency* (lowest FE/FL1) with much *shorter training* time than Feature3DGS, at the cost of a small PSNR drop on shadowed, low-semantic regions.

Table 2: Quantitative results comparison on outdoor scenes

| Method          | COLMAP [31] |      |      |        | MN360-Garden [15] |      |      |        | TnT-Caterpillar [30] |      |      |       |
|-----------------|-------------|------|------|--------|-------------------|------|------|--------|----------------------|------|------|-------|
|                 | PSNR↑       | FE↓  | FL1↓ | Time↓  | PSNR↑             | FE↓  | FL1↓ | Time↓  | PSNR↑                | FE↓  | FL1↓ | Time↓ |
| <sup>2DGS</sup> | 27.4        | 1.73 | 0.83 | 10.16m | 31.3              | 1.67 | 0.75 | 6.3m   | 26.8                 | 1.72 | 0.76 | 5.2m  |
| Feature3DGS     | 28.2        | 0.55 | 0.42 | 181m   | 31.6              | 0.65 | 0.33 | 155.4m | <u>=</u>             | =    | -    | -     |
| FHGS (ours)     | 26.5        | 0.25 | 0.24 | 7.8m   | 30.6              | 0.25 | 0.18 | 6.1m   | 26.6                 | 0.21 | 0.41 | 5.2m  |

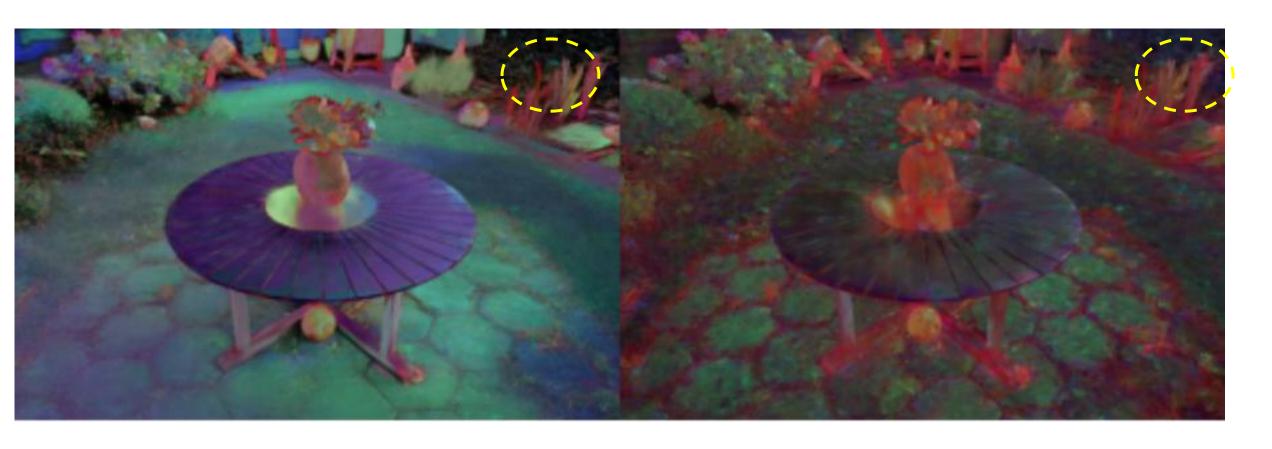
### Table 3 – DTU reconstruction

FHGS attains the *lowest chamfer distance* with competitive PSNR, using fewer Gaussians and <5 min training—far faster than Feature3DGS.

Table 3: Quantitative results between *FHGS*, 3DGS, 2DGS and Feature3DGS on the DTU [29], we report chamfer distance, PSNR (training-set view), reconstruction time, model size and point number.

| Methods     | $CD\uparrow$ | PSNR↑ | Time↓ | $PN\!\!\downarrow$ | MB (Storage) |
|-------------|--------------|-------|-------|--------------------|--------------|
| 3DGS        | 1.96         | 35.76 | 11.2m | 532k               | 113          |
| 2DGS        | 0.83         | 33.42 | 5.5m  | 342k               | 52           |
| Feature3DGS | 1.85         | 35.25 | >24h  | 642k               | 745          |
| FHGS (ours) | 0.75         | 34.21 | 4.8m  | 196k               | 183          |





PSNR of rendered images — indoor gains, outdoor trade-offs

FHGS outperforms our 2DGS baseline on indoor datasets, but falls below it outdoors. The drop is mainly due to shadows *(see yellow circles)*, fragmented soil, and other low-semantic textures that reduce numeric fidelity in PSNR.